口腔医学研究 ›› 2025, Vol. 41 ›› Issue (1): 1-6.DOI: 10.13701/j.cnki.kqyxyj.2025.01.001

• 综述 •    下一篇

智能化时代下的口腔黏膜病学——人工智能应用研究的现状与展望

杨青默, 魏攀*, 华红*   

  1. 北京大学口腔医院口腔黏膜科 国家口腔疾病临床医学研究中心口腔生物材料和数字诊疗装备国家工程研究中心 口腔数字医学北京重点实验室 北京 100081
  • 收稿日期:2024-08-15 出版日期:2025-01-28 发布日期:2025-01-24
  • 通讯作者: * 魏攀,E-mail:dent_wei@163.com;华红,E-mail:honghua1968@aliyun.com
  • 作者简介:杨青默(2000~ ),男,辽宁阜新人,博士在读,研究方向:口腔黏膜病学。
  • 基金资助:
    国家重点研发计划课题(编号:2023YFC3605603);北京市自然联合基金L242115(编号:30307472420);海淀区卫生健康发展科研培育计划(编号:HP2023-12-509002)

Oral Mucosal Diseases in the Era of Intelligence: Current Status and Prospects of Artificial Intelligence Applications in Research

YANG Qingmo, WEI Pan*, HUA Hong*   

  1. Department of Oral Mucosa, Peking University Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Oral Digital Medicine, Beijing 100081, China
  • Received:2024-08-15 Online:2025-01-28 Published:2025-01-24

摘要: 随着人工智能(artificial intelligence, AI)技术的发展,其在医学领域的融合应用受到广泛关注。医学人工智能在影像识别、疾病辅助诊断、疾病风险预测、提供健康咨询服务等方面发挥越来越重要的作用。口腔黏膜病诊断和评估高度依赖形态学特征,AI在该领域具有广阔的应用前景。本文针对AI在口腔黏膜病辅助诊断、风险预测中的应用进行综述,并对当前面临的挑战和未来发展趋势进行分析和展望,以期为口腔黏膜病AI未来相关研究提供参考。

关键词: 人工智能, 深度学习, 口腔黏膜病, 辅助诊断, 风险预测

Abstract: With the development of artificial intelligence (AI) technology, its integrated application in the medical field has received widespread attention. Medical artificial intelligence plays an increasingly important role in image recognition, disease diagnosis, risk prediction, and provision of health consulting services. The diagnosis and evaluation of oral mucosal diseases are highly dependent on morphological characteristics, and AI has broad application prospects in this field. This article reviews the application of AI in auxiliary diagnosis and risk prediction of oral mucosal diseases, and analyzes and prospects the current challenges and future development trends, in order to provide reference for future AI-related research on oral mucosal diseases.

Key words: artificial intelligence, deep learning, oral mucosal diseases, auxiliary diagnosis, risk prediction