[1] Hellstein JW, Marek CL. Candidiasis: Red and white manifestations in the oral cavity [J]. Head Neck Pathol, 2019, 13(1): 25-32. [2] Gan Y, Cui X, Ma T, et al. Paeoniflorin upregulates β-defensin-2 expression in human bronchial epithelial cell through the p38 MAPK, ERK, and NF-κB signaling pathways [J]. Inflammation, 2014, 37(5): 1468-1475. [3] Millsop JW, Fazel N. Oral candidiasis [J]. Clin Dermatol, 2016, 34(4): 487-494. [4] Höfs S, Mogavero S, Hube B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota [J]. J Microbiol, 2016, 54(3): 149-169. [5] Pereira R, Dos Santos Fontenelle RO, de Brito EHS, et al. Biofilm of Candida albicans: formation, regulation and resistance [J]. J Appl Microbiol, 2021, 131(1): 11-22. [6] Swidergall M, Filler SG. Oropharyngeal Candidiasis: Fungal invasion and epithelial cell responses [J]. PLoS Pathog, 2017, 13(1): e1006056. [7] Polke M, Hube B, Jacobsen ID. Candida survival strategies [J]. Adv Appl Microbiol, 2015, 91: 139-235. [8] Moyes DL, Wilson D, Richardson JP, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection [J]. Nature, 2016, 532(7597): 64-68. [9] Tang SX, Moyes DL, Richardson JP, et al. Epithelial discrimination of commensal and pathogenic Candida albicans [J]. Oral Dis, 2016, 22 Suppl 1: 114-119. [10] Prado-Montes de Oca E. Human beta-defensin 1: a restless warrior against allergies, infections and cancer [J]. Int J Biochem Cell Biol, 2010, 42(6): 800-804. [11] Cruz Díaz LA, Gutiérrez Ortega A, Chávez álvarez RDC, et al. Regulatory SNP rs5743417 impairs constitutive expression of human β-defensin 1 and has high frequency in Africans and Afro-Americans [J]. Int J Immunogenet, 2020, 47(4): 332-341. [12] Dornelas Figueira LM, Ricomini Filho AP, da Silva WJ, et al. Glucose effect on Candida albicans biofilm during tissue invasion [J]. Arch Oral Biol, 2020, 117: 104728. [13] Fusco A, Savio V, Donniacuo M, et al. Antimicrobial peptides human beta-defensin-2 and -3 protect the gut during Candida albicans infections enhancing the intestinal barrier integrity: In vitro study [J]. Front Cell Infect Microbiol, 2021, 11: 666900. [14] Miró MS, Caeiro JP, Rodriguez E, et al. Candida albicans modulates murine and human beta defensin-1 during vaginitis [J]. J Fungi (Basel), 2021, 8(1):20. [15] Casaroto AR, da Silva RA, Salmeron S, et al. Candida albicans-cell interactions activate innate immune defense in human palate epithelial primary cells via nitric oxide (NO) and β-defensin 2 (hBD-2) [J]. Cells, 2019, 8(7):707. [16] álvarez áH, Martínez Velázquez M, Prado Montes de Oca E. Human β-defensin 1 update: Potential clinical applications of the restless warrior [J]. Int J Biochem Cell Biol, 2018, 104: 133-137. [17] Ryan LK, Diamond G. Modulation of human β-defensin-1 production by viruses [J]. Viruses, 2017, 9(6):153. [18] Shelley JR, Davidson DJ, Dorin JR. The dichotomous responses driven by β-defensins [J]. Front Immunol, 2020, 11: 1176. [19] Liang W, Diana J. The dual role of antimicrobial peptides in autoimmunity [J]. Front Immunol, 2020, 11: 2077. [20] Tomalka J, Azodi E, Narra HP, et al. β-Defensin 1 plays a role in acute mucosal defense against Candida albicans [J]. J Immunol, 2015, 194(4): 1788-1795. [21] Järvå M, Phan TK, Lay FT, et al. Human β-defensin 2 kills Candida albicans through phosphatidylinositol 4,5-bisphosphate-mediated membrane permeabilization [J]. Sci Adv, 2018, 4(7): eaat0979. [22] Chang HT, Tsai PW, Huang HH, et al. LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic [J]. Biochem J, 2012, 441(3): 963-970. [23] Yoo YJ, Kwon I, Oh SR, et al. Antifungal effects of synthetic human beta-defensin-3-C15 peptide on Candida albicans-infected root dentin [J]. J Endod, 2017, 43(11): 1857-1861. [24] Vylkova S, Li XS, Berner JC, et al. Distinct antifungal mechanisms: beta-defensins require Candida albicans Ssa1 protein, while Trk1p mediates activity of cysteine-free cationic peptides [J]. Antimicrob Agents Chemother, 2006, 50(1): 324-331. [25] te Welscher YM, van Leeuwen MR, de Kruijff B, et al. Polyene antibiotic that inhibits membrane transport proteins [J]. Proc Natl Acad Sci U S A, 2012, 109(28): 11156-11159. [26] Anderson TM, Clay MC, Cioffi AG, et al. Amphotericin forms an extramembranous and fungicidal sterol sponge [J]. Nat Chem Biol, 2014, 10(5): 400-406. [27] Ostrosky-Zeichner L, Casadevall A, Galgiani JN, et al. An insight into the antifungal pipeline: selected new molecules and beyond [J]. Nat Rev Drug Discov, 2010, 9(9): 719-727. [28] Odds FC, Brown AJ, Gow NA. Antifungal agents: mechanisms of action [J]. Trends Microbiol, 2003, 11(6): 272-279. [29] Vila T, Sultan AS, Montelongo-Jauregui D, et al. Oral Candidiasis: A disease of opportunity [J]. J Fungi (Basel), 2020, 6(1):15. [30] Arendrup MC, Perlin DS. Echinocandin resistance: an emerging clinical problem? [J]. Curr Opin Infect Dis, 2014, 27(6): 484-492. [31] Zhang L, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony [J]. Pharmacol Ther, 2020, 207: 107452. [32] Xiang Y, Zhang Q, Wei S, et al. Paeoniflorin: a monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities [J]. J Pharm Pharmacol, 2020, 72(4): 483-495. [33] Wang XZ, Xia L, Zhang XY, et al. The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art [J]. Biomed Pharmacother, 2022, 149: 112800. [34] Wu XX, Huang XL, Chen RR, et al. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in Caco-2 cell monolayers [J]. Inflammation, 2019, 42(6): 2215-2225. [35] Fan Q, Guan X, Hou Y, et al. Paeoniflorin modulates gut microbial production of indole-3-lactate and epithelial autophagy to alleviate colitis in mice [J]. Phytomedicine, 2020, 79: 153345. [36] Luo X, Wang X, Huang S, et al. Paeoniflorin ameliorates experimental colitis by inhibiting gram-positive bacteria-dependent MDP-NOD2 pathway [J]. Int Immunopharmacol, 2021, 90: 107224. |