[1] Kassebaum NJ, Bernabe E, Dahiya M, et al. Global burden ofsevere periodontitis in 1990-2010: a systematic review and meta-regression [J]. J Dent Res, 2014, 93(11):1045-1053. [2] Tonetti MS, Eickholz P, Loos BG, et al. Principles in prevention of periodontaldiseases: Consensus report of group 1 of the11th European Workshop on Periodontology on effective prevention of periodontal and peri-implant diseases [J]. J Clin Periodontol, 2015, 42(Suppl 16):S5-S11. [3] Tonetti MS, Greenwell H, Kornman KS. Staging and gradingof periodontitis: Framework and proposal of a new classification and case definition [J]. J Clin Periodontol, 2018, 89(Suppl 1):S159-S172. [4] Vandenberghe B, Jacobs R, Yang J. Detection of periodontalbone loss using digital intraoral and cone beam computed tomography images: an invitro assessment of bony and/or infrabony defects [J]. Dentomaxillofac Radiol, 2008, 37(5):252-260. [5] Bornstein MM, Scarfe WC, Vaughn VM, et al. Cone beamcomputed tomography in implant dentistry: a systematic reviewfocusing on guidelines, indications, and radiation dose risks [J]. Int J Oral Maxillofac Implants, 2014, 29 Suppl:55-77. [6] Singha A, Thakur RS, Patel T. Deep learning applications in medical image analysis.In: Dash S, Pani S K. Biomedical data mining for information retrieval: methodologies, techniques, and applications[M]. John Wiley & Sons, 2021: 293-350. [7] Ni FD, Xu ZN, Liu MQ, et al. Towards clinically applicable automated mandibular canal segmentation on CBCT [J]. J Dent, 2024, 144:104931. [8] Ying S, Wang B, Zhu H, et al. Caries segmentation on tooth X-ray images with a deep network [J]. J Dent, 2022, 119:104076. [9] Fujima N, Andreu-Arasa VC, Meibom SK, et al. Deep learning analysis using FDG-PET to predict treatment outcome in patients with oral cavity squamous cellcarcinoma [J]. Eur Radiol, 2020, 30(11):6322-6330. [10] Yu HJ, Cho SR, Kim MJ, et al. Automated skeletal classification with lateral cephalometry based on artificial intelligence [J]. J Dent Res, 2020, 99(3):249-256. [11] Chang HJ, Lee SJ, Yong TH, et al. Deep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitis [J]. Sci Rep, 2020, 10(1):7531. [12] Dujic H, Meyer O, Hoss P, et al. Automatized detection of periodontal bone losson periapical radiographs by vision transformer networks [J]. Diagnostics, 2023, 13(23):3562. [13] Kim J, Lee HS, Song IS, et al. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs[J]. Sci Rep, 2019, 9(1):17615. [14] Krois J, Ekert T, Meinhold L, et al. Deep learning for the radiographic detection of periodontal bone loss [J]. Sci Rep, 2019, 9(1): 8495. [15] Xue T, Chen L, Sun Q. Deep learning method to automatically diagnose periodontal bone loss and periodontitis stage in dental panoramic radiograph [J]. J Dent, 2024, 150: 105373. [16] Zhang Y, Luo Z, Li S. A Multi-stage network with self-attention for tooth instance segmentation [C]. // Computer supported cooperative work and social computing. Singapore: Springer Nature Singapore, 2023: 438-450. [17] Lang NP, Bartold PM. Periodontal health [J]. J Periodontol, 2018, 89 Suppl 1:S9-S16. [18] Shaker AM, Maaz M, Rasheed H, et al. UNETR++: Delving into efficient and accurate 3D medical image segmentation [J]. IEEE Trans Med Imaging, 2024, 43(9):3377-3390. |