[1] Qin K, Parisi C, Fernandes FM. Recent advances in ice templating: from biomimetic composites to cell culture scaffolds and tissue engineering [J]. J Mater Chem B, 2021, 9(4): 889-907. [2] Chadha U, Selvaraj SK, Ravinuthala AK, et al. Bioinspired techniques in freeze casting: A survey of processes, current advances, and future directions [J]. Int J Polym Sci, 2022, 2022: 1-22. [3] 阿拉腾沙嘎, 胡嘉起, 蒋禅. 冰模板法制备碳纳米管复合材料及其应用 [J].陶瓷学报,2022,43(3): 371-381. [4] Campodoni E, Dozio SM, Panseri S, et al. Mimicking natural micro-environments: design of 3D-aligned hybrid scaffold for dentin regeneration [J]. Front Bioeng Biotechnol, 2020, 8: 836. [5] Li M, Dai X, Gao W, et al. Ice-templated fabrication of porous materials with bioinspired architecture and functionality [J]. Acc Mater Res, 2022, 3(11): 1173-1185. [6] Seifert A, Gruber J, Gbureck U, et al. Morphological control of freeze-structured scaffolds by selective temperature and material control in the ice-templating process [J]. Adv Eng Mater, 2022, 24(3): 2100860. [7] Xu Z, Wu M, Gao W, et al. A sustainable single-component “Silk nacre” [J]. Sci Adv, 2022, 8(19): eabo0946. [8] Wu M, Chen F, Wu P, et al. Bioinspired redwood-like scaffolds coordinated by in situ-generated silica-containing hybrid nano-coatings promote angiogenesis and osteogenesis both in vitro and in vivo [J]. Adv Healthc Mater, 2021, 10(23): e2101591. [9] Zhao N, Li M, Gong H, et al. Controlling ice formation on gradient wettability surface for high-performance bioinspired materials [J]. Sci Adv, 2020, 6(31): eabb4712. [10] Shao G, Hanaor DA, Shen X, et al. Freeze casting: from low-dimensional building blocks to aligned porous structures—a review of novel materials, methods, and applications [J]. Adv Mater, 2020, 32(17): 1907176. [11] Li M, Wang M, Zhao N, et al. Scalable fabrication of high-performance bulk nacre-mimetic materials on a nanogrooved surface [J]. ACS nano, 2022, 16(9): 14737-14744. [12] John JV, Mccarthy A, Wang H, et al. Freeze-casting with 3D-printed templates creates anisotropic microchannels and patterned macrochannels within biomimetic nanofiber aerogels for rapid cellular infiltration [J]. Adv Healthc Mater, 2021, 10(12): 2100238. [13] Wang Z, Florczyk SJ. Freeze-FRESH: a 3D printing technique to produce biomaterial scaffolds with hierarchical porosity [J]. Materials (Basel), 2020, 13(2): 354. [14] Gao X, Yang X, Sun Q, et al. Converting a thick electrode into vertically aligned “Thin electrodes” by 3D-Printing for designing thickness independent Li-S cathode [J]. Energy Storage Mater, 2020, 24: 682-688. [15] Deng Z, Liang J, Fang N, et al. Integration of collagen fibers in connective tissue with dental implant in the transmucosal region [J]. Int J Biol Macromol, 2022, 208: 833-843. [16] Lad SE, Anderson RJ, Cortese SA, et al. Bone remodeling and cyclical loading in maxillae of New Zealand white rabbits (Oryctolagus cuniculus) [J]. Anat Rec, 2021, 304(9): 1927-1936. [17] Feng Y, Gao HL, Wu D, et al. Biomimetic lamellar chitosan scaffold for soft gingival tissue regeneration [J]. Adv Funct mater, 2021, 31(43): 2105348. [18] Staples RJ, Ivanovski S, Vaquette C. Fibre guiding scaffolds for periodontal tissue engineering [J]. J Periodontal Res, 2020, 55(3): 331-341. [19] Fang Z, Guo M, Zhou Q, et al. Enamel-like tissue regeneration by using biomimetic enamel matrix proteins [J]. Int J Biol Macromol, 2021, 183: 2131-2141. [20] Zhao H, Liu S, Wei Y, et al. Multiscale engineered artificial tooth enamel [J]. Science, 2022, 375(6580): 551-556. [21] 金晔丽, 潘海华, 唐睿康. 仿生矿化与硬组织修复 [J]. 无机化学学报, 2020, 36(6): 1049-1062. [22] Ezeldeen M, Loos J, Nejad ZM, et al. 3D-printing-assisted fabrication of chitosan scaffolds from different sources and cross-linkers for dental tissue engineering [J]. Eur Cell Mater, 2021, 41: 485-501. [23] Zhao XY, Li XP, Zhao K, et al. Preparation of a hydroxyapatite ceramic with comblike tubules structure and its permeablity [J]. Key Eng Mater, 2018, 768: 135-139. [24] Chen J, Mo Q, Sheng R, et al. The application of human periodontal ligament stem cells and biomimetic silk scaffold for in situ tendon regeneration [J]. Stem Cell Res Ther, 2021, 12(1): 596. [25] Algharaibeh S, Wan H, Al-Fodeh R, et al. Fabrication and mechanical properties of biomimetic nacre-like ceramic/polymer composites for chairside CAD/CAM dental restorations [J]. Dent Mater, 2022, 38(1): 121-132. [26] Yin TJ, Jeyapalina S, Naleway SE. Characterization of porous fluorohydroxyapatite bone-scaffolds fabricated using freeze casting [J]. J Mech Behav Biomed Mater, 2021, 123: 104717. [27] Ghorbani F, Zamanian A, Kermanian F, et al. A bioinspired 3D shape olibanum-collagen-gelatin scaffolds with tunable porous microstructure for efficient neural tissue regeneration [J]. Biotechnol Prog, 2020, 36(1): e2918. [28] Shen L, Song X, Xu Y, et al. Patterned vascularization in a directional ice-templated scaffold of decellularized matrix [J]. Eng Life Sci, 2021, 21(10): 683-692. |