[1] Anderson DG, Burdick JA, Langer R. Smart biomaterials [J]. Science, 2004, 305(5692): 1923-1924. [2] Hench LL. Biomaterials [J]. Science, 1980, 208(4446): 826-831. [3] Hench LL, Polak JM. Third-generation biomedical materials [J]. Science, 2002, 295(5557): 1014-1017. [4] 李鑫,周进茹,李紫嫣,等.第三代生物医用材料在口腔领域中的应用[J].国际口腔医学杂志,2016,43(3): 67-71. [5] Holzapfel BM, Reichert JC, Schantz JT, et al. How smart do biomaterials need to be? A translational science and clinical point of view [J]. Adv Drug Deliv Rev, 2013, 65(4): 581-603. [6] Kamila S. Introduction, classification and applications of smart materials: an overview [J]. American Journal of Applied Sciences, 2013, 10(8): 876-880. [7] Ghosh S, Ghosh S, Sil PC. Role of nanostructures in improvising oral medicine [J]. Toxicol Rep, 2019, 6: 358-368. [8] Weir MD, Ruan J, Zhang N, et al. Effect of calcium phosphate nanocomposite on in vitro remineralization of human dentin lesions [J]. Dent Mater, 2017, 33(9): 1033-1044. [9] 胡蝶,张凌琳.口腔来源蛋白及多肽诱导牙釉质仿生矿化的研究进展[J].口腔医学研究,2019,35(6):517-520. [10] Kamal D, Hassanein H, Elkassas D, et al. Comparative evaluation of remineralizing efficacy of biomimetic self-assembling peptide on artificially induced enamel lesions: An in vitro study [J]. J Conserv Dent, 2018, 21(5): 536-541. [11] Yang Y, Reipa V, Liu G, et al. pH-sensitive compounds for selective inhibition of acid-producing bacteria [J]. ACS Appl Mater Interfaces, 2018, 10(10): 8566-8573. [12] Luo D, Shahid S, Hasan SM, et al. Controlled release of chlorhexidine from a HEMA-UDMA resin using a magnetic field [J]. Dent Mater, 2018, 34(5): 764-775. [13] Dabbagh A, Kasim NHA, Bakri MM, et al. Polyethylene-glycol coated maghemite nanoparticles for treatment of dental hypersensitivity [J]. Materials Letters, 2014, 121: 89-92. [14] Chang PC, Chao YC, Hsiao MH, et al. Inhibition of periodontitis induction using a stimuli-responsive hydrogel carrying naringin [J]. J Periodontol, 2017, 88(2): 190-196. [15] Mou J, Liu Z, Liu J, et al. Hydrogel containing minocycline and zinc oxide-loaded serum albumin nanopartical for periodontitis application: preparation, characterization and evaluation [J]. Drug Deliv, 2019, 26(1): 179-187. [16] Li N, Jiang L, Jin H, et al. An enzyme-responsive membrane for antibiotic drug release and local periodontal treatment [J]. Colloids Surf B Biointerfaces, 2019, 183: 110454. [17] Guo J, Sun H, Lei W, et al. MMP-8-responsive polyethylene glycol hydrogel for intraoral drug delivery [J]. J Dent Res, 2019, 98(5): 564-571. [18] 刘君瑜,肖宇,王翔宇,等.血糖敏感型水凝胶治疗糖尿病大鼠牙周炎的实验研究[J].口腔医学研究,2020,36(6): 567-571. [19] Mo R, Gu Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery [J]Mater Today, 2016, 19(5): 274-283. [20] Zhao H, Feng H, Liu D, et al. Self-assembling monomeric nucleoside molecular nanoparticles loaded with 5-FU enhancing therapeutic efficacy against oral cancer [J]. ACS nano, 2015, 9(10): 9638-9651. [21] Langer R, Vacanti J. Tissue engineering [J]. Science, 1993, 260(5110): 920-926. [22] Izadifar M, Haddadi A, Chen X, et al. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering [J]. Nanotechnology, 2014, 26(1): 012001. [23] Chang B, Ahuja N, Ma C, et al. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration [J]. Mater Sci Eng R Rep, 2017, 111: 1-26. [24] Liu M, Zeng X, Ma C, et al. Injectable hydrogels for cartilage and bone tissue engineering [J]. Bone Res, 2017, 5:17014. [25] Damaraju SM, Shen Y, Elele E, et al. Three-dimensional piezoelectric fibrous scaffolds selectively promote mesenchymal stem cell differentiation [J]. Biomaterials, 2017, 149: 51-62. [26] Li X, Ma C, Xie X, et al. Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system [J]. Acta Biomater, 2016, 35: 57-67. [27] Fang J, Liu R, Chen S, et al. Tuning the immune reaction to manipulate the cell-mediated degradation of a collagen barrier membrane [J]. Acta Biomater, 2020, 109: 95-108. [28] Sprio S, Campodoni E, Sandri M, et al. A graded multifunctional hybrid scaffold with superparamagnetic ability for periodontal regeneration [J]. Int J Mol Sci, 2018, 19(11): 3604. [29] Tampieri A, Iafisco M, Sandri M, et al. Magnetic bioinspired hybrid nanostructured collagen-hydroxyapatite scaffolds supporting cell proliferation and tuning regenerative process[J]. ACS Appl Mater Interfaces, 2014, 6(18): 15697-15707. [30] Luo Z, Zhang S, Pan J, et al. Time-responsive osteogenic niche of stem cells: a sequentially triggered, dual-peptide loaded, alginate hybrid system for promoting cell activity and osteo-differentiation [J]. Biomaterials, 2018, 163: 25-42. [31] Tandon B, Blaker JJ, Cartmell SH. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair [J]. Acta Biomater, 2018, 73: 1-20. [32] Bai Y, Dai X, Yin Y, et al. Biomimetic piezoelectric nanocomposite membranes synergistically enhance osteogenesis of deproteinized bovine bone grafts [J]. Int J Nanomedicine, 2019, 14: 3015-3026. [33] Li YC, Zhang YS, Akpek A, et al. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials [J]. Biofabrication, 2016, 9(1): 012001. |