[1] 周延民,汪汉池,赵静辉,等.种植体表面改性效果的研究[J]. 口腔医学研究,2018,34(4): 343-346. [2] Gosau M, Haupt M, Thude S, et al. Antimicrobial effect and biocompatibility of novel metallic nanocrystalline implant coatings[J]. J Biomed Mater Res B Appl Biomater, 2016, 104(8): 1571-1579. [3] 蔡彦坤, 郑国莹, 隋磊. 纯钛或钛合金种植材料表面不同纳米结构对细胞行为的影响[J]. 口腔医学研究, 2018, 34(7): 699-702. [4] Gao A, Hang R, Huang X, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts[J]. Biomaterials, 2014, 35 (13): 4223-4235. [5] Goudouri OM, Kontonasaki E, Lohbauer U, et al. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy[J]. Acta biomater, 2014, 10(8): 3795-3810. [6] Kalaivani S, Singh RK, Ganesan V, et al. Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behavior of calcium silicate coatings on titanium metal[J]. J Mater Chem B, 2014, 2(7): 846-858. [7] Penarrieta-Juanito G, Sordi MB, Henriques B, et al. Surface damage of dental implant systems and ions release after exposure to fluoride and hydrogen peroxide[J]. J Periodontal Res, 2019, 54(1): 46-52. [8] Oliscovicz NF, de Castro DT, Valente M, et al. Surface treatment of implant materials with antimicrobial nanoparticulates[J]. Gen Dent, 2018, 66(1): 66-73. [9] Mauerer A, Lange B, Welsch GH, et al. Release of Cu2+ from a copper-filled TiO2 coating in a rabbit model for total knee arthroplasty[J]. J Mater Sci-Mater M, 2014, 25 (3):813-821. [10] Gollwitzer H, Haenle M, Mittelmeier W, et al. A biocompatible sol-gel derived titania coating for medical implants with antibacterial modification by copper integration[J]. AMB Express, 2018, 8(1): 24-33. [11] Lee BS, Shih KS, Lai CH, et al. Surface property alterations and osteoblast attachment to contaminated titanium surfaces after different surface treatments: An in vitro study[J]. Clin Implant Dent Relat Res, 2018, 20(4): 583-591. |