口腔医学研究 ›› 2021, Vol. 37 ›› Issue (4): 304-309.DOI: 10.13701/j.cnki.kqyxyj.2021.04.007

• 牙周病学研究 • 上一篇    下一篇

基于生物信息学分析鉴定人牙周炎牙龈组织中的关键生物标志物及相关免疫细胞浸润

王子恢, 郜洪宇*, 莫菲菲, 田广杰, 王永兰*   

  1. 天津医科大学口腔医学院·口腔医院牙周科 天津 300070
  • 收稿日期:2020-10-12 发布日期:2021-04-15
  • 通讯作者: *郜洪宇,E-mail:gaohongyu_frank@163.com;王永兰,E-mail:tmuperiodontology@163.com
  • 作者简介:王子恢(1994~ ),男,天津人,硕士在读,主要从事牙周病学相关研究。
  • 基金资助:
    天津医科大学科学基金(编号:2016KYZM06)

Identification of Key Biomarkers and Immune Infiltration in Human Gingival Tissue of Periodontitis by Bioinformatics Analysis

WANG Zihui, GAO Hongyu*, MO Feifei, TIAN Guangjie, WANG Yonglan*   

  1. Department of Periodontology, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, China
  • Received:2020-10-12 Published:2021-04-15

摘要: 目的: 通过生物信息学分析鉴定牙周炎牙龈组织中的关键生物标志物和相关免疫细胞浸润,探索牙周炎的发病机制。方法: 从GEO数据库下载GSE10334、GSE16134和GSE23586三个数据集,通过“limma”程序包筛选差异基因,利用STRING和Cytoscape构建蛋白互作(protein-protein interaction,PPI)网络来获取毂基因,利用CIBERSORT算法分析牙周炎和健康对照之间牙龈组织的免疫细胞浸润。结果: 共筛选出129个差异表达基因,构建PPI网络后获取10个毂基因,其显著富集于趋化因子和细胞因子活性等多种细胞生理活动,和细胞因子-细胞因子受体相互作用信号通路、趋化因子信号通路、IL-17信号通路。与健康对照组相比,牙周炎牙龈组织中初始B细胞、浆细胞、初始CD4+T细胞、活化的记忆CD4+T细胞、单核细胞,M1巨噬细胞和中性粒细胞的比例更高(P<0.05)。结论: 毂基因的功能分析及探究牙周炎和健康牙龈中所浸润的免疫细胞之间的差异可以为研究牙周炎的发生发展机制提供新的见解和思路。

关键词: 牙周炎, 生物信息学, 分子生物学, 免疫浸润, 细胞因子

Abstract: Objective: To identify the key biomarkers and immune infiltration in gingival tissue of periodontitis by bioinformatics analysis. Methods: The gene expression profiles of GSE10334, GSE16134, and GSE23586 were downloaded from the Gene Expression Omnibus datasets. The differentially expressed genes were identified by the LIMMA package. PPI network was constructed to determine hub genes by using STRING and Cytoscape. The CIBERSORT algorithm was used to analyze the immune infiltration of periodontal soft tissue between periodontitis and healthy controls. Results: A total of 129 differentially expressed genes were identified. Based on the PPI network, 10 hub genes were identified, which were significantly enriched in various cellular physiological activities and signal pathways such as chemokine and cytokine activity, cytokine-cytokine receptor interaction signals pathway, chemokine signaling pathway, and IL-17 signaling pathway. Compared with the healthy control, the gingival tissue of periodontitis contained a higher proportion of naive B cells, plasma cells, naive CD4+T cells, activated memory CD4+T cells, monocytes, M1 macrophages, and neutrophils (P<0.05). Conclusion: The functional analysis of hub genes and the difference of immune infiltration in gingival tissue between periodontitis and healthy control could provide new insights for understanding the development and pathogenesis mechanism of periodontitis.

Key words: periodontitis, bioinformatics, molecular biology, immune infiltration, cytokine