[1] Naji CQK, Salman AJM, Dawood NM. Review: the surface modification of pure titanium by micro-arc oxidation (MAO) process [J]. J Phys Conf Ser, 2021, 1973(1): 012114. [2] Hu Y, Wang Z, Ai J, et al. Preparation of coating on the titanium surface by micro-arc oxidation to improve corrosion resistance [J]. Coatings, 2021, 11(2):230. [3] Abduljabbar T, Javed F, Kellesarian SV, et al. Effect of Nd:YAG laser-assisted non-surgical mechanical debridement on clinical and radiographic peri-implant inflammatory parameters in patients with peri-implant disease [J]. J Photoch Photobio B, 2017, 168(1): 16-19. [4] Matys J, Botzenhart U, Gedrange T, et al. Thermodynamic effects after diode and Er:YAG laser irradiation of grade Ⅳ and Ⅴ titanium implants placed in bone - an ex vivo study. Preliminary report [J]. Biomed Tech (Berl), 2016, 61(5): 499-507. [5] Bressel TAB, de Queiroz JDF, Gomes Moreira SM, et al. Laser-modified titanium surfaces enhance the osteogenic differentiation of human mesenchymal stem cells [J]. Stem Cell Res Ther, 2017, 8(1): 269. [6] Hindy A, Farahmand F, Tabatabaei FS. In vitro biological outcome of laser application for modification or processing of titanium dental implants [J]. Lasers Med Sci, 2017, 32(5): 1197-1206. [7] Wang Q, Cheng M, He G, et al. Surface modification of porous titanium with microarc oxidation and its effects on osteogenesis activity in vitro [J]. J Nanomater, 2015, 2015:408634. [8] Zhou W, Huang O, Gan Y, et al. Effect of titanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs [J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 290-299. [9] Lv L, Li K, Xie Y, et al. Enhanced osteogenic activity of anatase TiO2 film: Surface hydroxyl groups induce conformational changes in fibronectin [J]. Mater Sci Eng C, 2017, 78(1): 96-104. [10] Wawrzyk A, Ŀobacz M, Adamczuk A, et al. The efficacy of a diode laser on titanium implants for the reduction of microorganisms that cause periimplantitis [J]. Materials, 2021, 14(23): 7215. [11] Romanos GE, Everts H, Nentwig GH. Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination [J]. J Periodontol, 2000, 71(5): 810-815. [12] Deppe H, Ahrens M, Behr AV, et al. Thermal effect of a 445 nm diode laser on five dental implant systems: an in vitro study [J]. Sci Rep, 2021, 11(1): 20174. [13] Giannelli M, Lasagni M, Bani D. Thermal effects of λ=808 nm GaAlAs diode laser irradiation on different titanium surfaces [J]. Lasers Med Sci, 2015, 30(9) :2341-2352. [14] Moeintaghavi A, Bagheri H, Pour MY, et al. Effects of diode, CO2, Er:YAG, and Er and Cr:YSGG on titanium implant surfaces by scanning electron microscopy [J]. Adv Mater Sci Eng, 2021, 2021: 3551097. [15] Wang CY, Lee BS, Jhang YT, et al. Er:YAG laser irradiation enhances bacterial and lipopolysaccharide clearance and human gingival fibroblast adhesion on titanium discs [J]. Sci Rep, 2021, 11(1): 23954. [16] Yao WL, Lin JCY, Salamanca E, et al. Er,Cr:YSGG laser performance improves biological response on titanium surfaces [J]. Materials (Basel), 2020, 13(3): 756. [17] Uhm SW, Lee IS, Kim BH, et al. Effect of erbium-doped yttrium-aluminum-garnet laser on surface characteristics and biocompatibility of resorbable blast media titanium [J]. Oral Biol Res, 2021, 45(2):49-58. [18] Tavakoli J, Khosroshahi ME. Surface morphology characterization of laser-induced titanium implants: lesson to enhance osseointegration process [J]. Biomed Eng Lett, 2018, 8(3): 249-257. [19] Trtica M, Gakovic B, Batani D, et al. Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532nm [J]. Appl Surf Sci, 2006, 253(5): 2551-2556. [20] Babuska V, Palan J, Kolaja Dobra J, et al. Proliferation of osteoblasts on laser-modified nanostructured titanium surfaces [J]. Materials (Basel), 2018, 11(10): 1827. [21] Helal M, Zaghlool M, Gad E. Effect of different titanium laser surface treatments on osseointegration [J]. Int J Acad Res, 2010, 2(2): 138-144. [22] Allegrini S, Yoshimoto M, Salles MB, et al. Evaluation of bone tissue reaction in laser beamed implants [J]. Appl Surf Sci, 2014, 307(1): 503-512. [23] Ye G, Li C, Xiang X, et al. Bone morphogenetic protein-9 induces PDLSCs osteogenic differentiation through the ERK and p38 signal pathways [J]. Int J Med Sci, 2014, 11(10): 1065-1072. [24] Tang W, Li Y, Osimiri L, et al. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation [J]. J Biol Chem, 2011, 286(38): 32995-33002. [25] Xie H, Cao T, Gomes JV, et al. Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells [J]. Carbon, 2015, 93(1): 266-275. |