[1] Liu Z, Dong L, Zheng Z, et al. Mechanism, prevention, and treatment of radiation-induced salivary gland injury related to oxidative stress [J]. Antioxidants (Basel), 2021, 10(11): 1666. [2] Hosoi K, Yao C, Hasegawa T, et al. Dynamics of salivary gland AQP5 under normal and pathologic conditions [J]. Int J Mol Sci, 2020, 21(4): 1182. [3] 麦麦提吐尔逊·阿布都乃比,热则耶·麦麦提祖农,张鹏鑫,等.放射后氧化应激对大鼠颌下腺腺泡细胞凋亡的影响[J].口腔医学研究,2024,40(7): 605-610. [4] Buss LG, Rheinheimer BA, Limesand KH. Radiation-induced changes in energy metabolism result in mitochondrial dysfunction in salivary glands [J]. Sci Rep, 2024, 14(1): 845. [5] Grigalunas M, Brakmann S, Waldmann H. Chemical evolution of natural product structure [J]. J Am Chem Soc, 2022, 144(8): 3314-3329. [6] Gasmi A, Shanaida M, Oleshchuk O, et al. Natural ingredients to improve immunity [J]. Pharmaceuticals (Basel), 2023, 16(4):528. [7] Dong M, Li J, Yang D, et al. Biosynthesis and pharmacological activities of flavonoids, triterpene saponins and polysaccharides derived from astragalus membranaceus [J]. Molecules, 2023, 28(13): 5018. [8] Moudgil KD, Venkatesha SH. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation [J]. Int J Mol Sci, 2022, 24(1): 95. [9] Sakat MS, Kılıç K, Sahin A, et al. The protective efficacy of quercetin and naringenin against radiation-related submandibular gland injury in female rats: A histopathological, immunohistochemical, and biochemical study [J]. Arch Oral Biol, 2022, 142: 105510. [10] Saafan SM, Mohamed SA, Noreldin AE, et al. Rutin attenuates D-galactose-induced oxidative stress in rats’ brain and liver: Molecular docking and experimental approaches [J]. Food Funct, 2023, 14(12): 5728-5751. [11] Negahdari R, Bohlouli S, Sharifi S, et al. Therapeutic benefits of rutin and its nanoformulations [J]. Phytother Res, 2021, 35(4):1719-1738. [12] Ahmed SF, El-Maghraby EMF, Rashad MM, et al. Iron overload induced submandibular glands toxicity in gamma irradiated rats with possible mitigation by hesperidin and rutin [J]. BMC Pharmacol Toxicol, 2024, 25(1): 22. [13] Ferreira de Oliveira JMP, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models [J]. Phytomedicine, 2020, 73: 152887. [14] Li X, Huang W, Tan R, et al. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect [J]. Biomed Pharmacother, 2023, 159: 114222. [15] Imperatrice M, Cuijpers I, Troost FJ, et al. Hesperidin functions as an ergogenic aid by increasing endothelial function and decreasing exercise-induced oxidative stress and inflammation, thereby contributing to improved exercise performance [J]. Nutrients, 2022, 14(14): 2955. [16] Sakat MS, Kılıç K, Sahin A, et al. The protective efficacy of hesperidin and thymol on radiation-induced submandibular gland damage [J]. Laryngoscope, 2023, 133(8): 1885-1892. [17] Mostafa OAA, Ibrahim F, Borai E. Protective effects of hesperidin in cyclophosphamide-induced parotid toxicity in rats [J]. Sci Rep, 2023, 13(1): 158. [18] Ding M, Zhu Y, Xu X, et al. Naringenin inhibits acid sphingomyelinase-mediated membrane raft clustering to reduce NADPH oxidase activation and vascular inflammation [J]. J Agric Food Chem, 2024, 72(13): 7130-7139. [19] Kaur G, Kaur M, Bansal M. New insights of structural activity relationship of curcumin and correlating their efficacy in anticancer studies with some other similar molecules [J]. Am J Cancer ResAm J Cancer Res, 2021, 11(8): 3755-3765. [20] Zhang T, Liu C, Ma S, et al. Protective effect and mechanism of action of rosmarinic acid on radiation-induced parotid gland injury in rats [J]. Dose Response, 2020, 18(1): 1559325820907782. [21] Kim JM, Kim JW, Choi ME, et al. Protective effects of curcumin on radioiodine-induced salivary gland dysfunction in mice [J]. J Tissue Eng Regen Med, 2019, 13(4): 674-681. [22] Ge J, Liu Z, Zhong Z, et al. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery [J]. Bioorg Chem, 2022, 124: 105817. [23] Nanjaiah H, Vallikannan B. Lutein upregulates the PGC-1α, NRF1, and TFAM expression by AMPK activation and downregulates ROS to maintain mtDNA integrity and mitochondrial biogenesis in hyperglycemic ARPE-19 cells and rat retina [J]. Biotechnol Appl Biochem, 2019, 66(6): 999-1009. [24] Zhou XR, Wang XY, Sun YM, et al. Glycyrrhizin protects submandibular gland against radiation damage by enhancing antioxidant defense and preserving mitochondrial homeostasis [J]. Antioxid Redox Signal, 2024, 41(10-12): 723-743. [25] Tang Z, Zhong M, Cao H, et al. Polysaccharide of dicliptera chinensis (L.) juss. alleviated cholestatic liver disease by modulating the FXR pathway [J]. Int J Biol Macromol, 2024, 281(Pt 4): 136393. [26] Zhao L, Zhu Y, Zhang L, et al. Dicliptera chinensis-derived polysaccharide enhanced the growth activity of submandibular gland cells in vitro after radiotherapy [J]. Heliyon, 2024, 10(10): e31005. [27] An EK, Hwang J, Kim SJ, et al. Comparison of the immune activation capacities of fucoidan and laminarin extracted from laminaria japonica [J]. Int J Biol Macromol, 2022, 208: 230-242. [28] Nigam S, Singh R, Bhardwaj SK, et al. Perspective on the therapeutic applications of algal polysaccharides [J]. J Polym Environ, 2022, 30(3): 785-809. [29] 赵歆,徐杨,柴溶,等.海带多糖通过抑制NF-κB和JNK通路减轻放射诱导的小鼠下颌下腺炎症反应[J].中国病理生理杂志,2021,37(9): 1545-1553. [30] Kim YM, Kim JM, Kim JW, et al. Fucoidan attenuates radioiodine-induced salivary gland dysfunction in mice [J]. BMC Oral Health, 2019, 19(1): 198. [31] Meeks L, Pessoa DDO, Martinez JA, et al. Integration of metabolomics and transcriptomics reveals convergent pathways driving radiation- induced salivary gland dysfunction [J]. Physiol Genomics, 2021, 53(3): 85-98. [32] Shan H, Li X, Ouyang C, et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function [J]. Ecotoxicol Environ Saf, 2022, 231: 113170. [33] Sun YM, Wang XY, Zhou XR, et al. Salidroside ameliorates radiation damage by reducing mitochondrial oxidative stress in the submandibular gland [J]. Antioxidants (Basel), 2022, 11(7): 1414. [34] Gabbai-Armelin PR, Sales LS, Ferrisse TM, et al. A systematic review and meta-analysis of the effect of thymol as an anti-inflammatory and wound healing agent: A review of thymol effect on inflammation and wound healing [J]. Phytother Res, 2022, 36(9): 3415-3443. [35] Luff M, Evans L, Hiyari S, et al. Nigella sativa oil mitigates xerostomia and preserves salivary function in radiotherapy-treated mice [J]. Laryngoscope Investig Otolaryngol, 2023, 8(4): 912-920. [36] Jeong JH, Lee WH, Min SC, et al. Evaluation of the antiviral efficacy of subcutaneous nafamostat formulated with glycyrrhizic acid against SARS-CoV-2 in a murine model [J]. Int J Mol Sci, 2023, 24(11): 9579. [37] Zhou H, Zhang M, Cao H, et al. Research progress on the dynergistic anti-tumor effect of natural anti-tumor components of Chinese herbal medicine combined with chemotherapy drugs [J]. Pharmaceuticals (Basel), 2023, 16(12): 1734. [38] Afshari H, Noori S, Zarghi A. A novel combination of metformin and resveratrol alleviates hepatic steatosis by activating autophagy through the cAMP/AMPK/SIRT1 signaling pathway [J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(11): 3135-3148. |