[1] Hartstone-Rose A, Santana SE. Behavioral correlates of cranial muscle functional morphology [J]. Anat Rec (Hoboken), 2018, 301(2): 197-201. [2] Anthes C, Garcia-Hernandez RJ, Wiedemann M, et al. State of the art of virtual reality technology [C]. 2016 IEEE Aerospace Conference, 2016:1-19. [3] Chen S, Zeng Y, Yan M, et al. Morphological evaluation of the sagittal plane femoral load-bearing surface in computer-simulated virtual total knee arthroplasty implantation at different flexion angles [J]. Knee Surg Sports Traumatol Arthrosc, 2017, 25(9): 2880-2886. [4] Yang D, Wu P, Tan C, et al. 3D motion modeling and reconstruction of left ventricle wall in cardiac MRI [J]. Funct Imaging Model Heart, 2017, 10263: 481-492. [5] Rodrigues AM, Bardella F, Zuffo MK, et al. Integrated approach for geometric modeling and interactive visual analysis of grain structures [J]. Computer-Aided Design, 2018, 97: 1-14. [6] Murai A, Youn Hong Q, Yamane K, et al. Dynamic skin deformation simulation using musculoskeletal model and soft tissue dynamics [J]. Computational Visual Media, 2017, 3(1): 49-60. [7] Reinaldo Goncalves B, Karttunen A, Romanoff J, et al. Buckling and free vibration of shear-flexible sandwich beams using a couple-stress-based finite element [J]. Composite Structures, 2017, 165: 233-241. [8] D'Souza KM, Aras MA. Three-dimensional finite element analysis of the stress distribution pattern in a mandibular first molar tooth restored with five different restorative materials [J]. J Indian Prosthodont Soc, 2017, 17(1): 53-60. [9] 李沛,杨小强,李焕良,等.基于 Matlab/SimMechanics 的六自由度并联运动平台建模与分析[J].机械与电子, 2016, 34(3): 75-80. [10] Savel'ev AD. Numerical simulation of a hypersonic flow over an aircraft in a high-altitude active movement area [J]. Mathematical Models and Computer Simulations, 2018, 10(2): 218-225. [11] Zeng J, Zha Y, Yang J. Switching the Richards’ equation for modeling soil water movement under unfavorable conditions [J]. Journal of Hydrology, 2018, 563: 942-949. [12] Campos-Rebelo R, Costa A, Gomes L. Analysis and generation of logical signals for discrete events behavioral modeling [M]. In: Camarinha-Matos L, Baldissera T, Di Orio G, et al. Technological innovation for cloud-based engineering systems. DoCEIS 2015. IFIP Advances in Information and Communication Technology,450:147-156. [13] Schüler T, Heinzl A, Volk GF, et al. Static and dynamic sonography of facial muscles in healthy subjects-Impact of the process of manual muscle segmentation on inter-observer-reliability [J]. Ultraschall Med, 2016, 37(S 01): PS7_06. [14] Dickinson E, Basham C, Rana A, et al. Visualization and quantification of digitally dissected muscle fascicles in the masticatory muscles of callithrix jacchus using nondestructive diceCT [J]. Anat Rec (Hoboken), 2019, 302(11): 1891-1900. [15] Zhang X, Kim D, Shen S, et al. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation [J]. Biomech Model Mechanobiol, 2018, 17(2): 387-402. [16] Kajisa E, Tohara H, Nakane A, et al. The relationship between jaw-opening force and the cross-sectional area of the suprahyoid muscles in healthy elderly [J]. J Oral Rehabil, 2017, 45(3):222-227. [17] Giannakopoulos NN, Schindler HJ, Hellmann D. Co-contraction behaviour of masticatory and neck muscles during tooth grinding [J]. J Oral Rehabil, 2018, 45(7): 504-511. [18] Tsouknidas A, Jimenezrojo L, Karatsis E, et al. A Bio-Realistic finite element model to evaluate the effect of masticatory loadings on mouse mandible-related tissues [J]. Front Physiol, 2017, 8:273. [19] Tuijt M, Koolstra JH, Lobbezoo F, et al. How muscle relaxation and laterotrusion resolve open locks of the temporomandibular joint. Forward dynamic 3D-modeling of the human masticatory system [J].J Biomech, 2016, 49(2): 276-283. [20] Ledogar JA, Dechow PC, Wang Q, et al. Human feeding biomechanics: performance, variation, and functional constraints [J]. PeerJ, 2016, 4: e2242. [21] Groning F, Jones ME, Curtis N, et al. The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull [J]. J R Soc Interface, 2013, 10(84): 20130216. [22] Yang Y, Yifan H, Haolin T, et al. Image-based biomechanical relationship estimation between maximum jaw opening and masticatory muscle activities [C]. 2017 2nd International Conference on Image, Vision and Computing (ICIVC), 2017: 670-675. [23] Penrose F, Cox P, Kemp G, et al. Functional morphology of the jaw adductor muscles in the Canidae [J]. Anat Rec (Hoboken), 2020, 303(11):2878-2903. [24] Yamaguchi S, Okada C, Watanabe Y, et al. Analysis of masticatory muscle coordination during unilateral single-tooth clenching using muscle functional magnetic resonance imaging [J]. J Oral Rehabil, 2018, 45(1): 9-16. [25] Hill AV. The heat of shortening and the dynamic constants of muscle [J]. Proceedings of the Royal Society of London, 1938, 126(843):136-195. [26] Sagl B, Schmid-Schwap M, Piehslinger E, et al. A dynamic jaw model with a finite-element temporomandibular joint [J]. Front Physiol, 2019, 10: 1156. [27] Heidsieck DSP, Koolstra JH, De Ruiter MHT, et al. Biomechanical effects of a mandibular advancement device on the temporomandibular joint [J]. J Craniomaxillofac Surg, 2018, 46(2): 288-292. [28] Dumitru N, Copilusi C, Ciortan M. Kinematic and dynamic study contributions on human jaw system [C]. New Trends in Medical and Service Robots, 2016: 79-91. [29] Goharian N, Moghimi S, Kalani H, et al. Dynamic modeling of the electromyographic and masticatory force relation through adaptive neuro-fuzzy inference system principal dynamic mode analysis [J]. Iranian Journal of Medical Physics, 2018, 15: 78-86. [30] Garcia E, Leal MM, Villamil MB. Modeling and simulation of masticatory muscles [J]. Procedia Computer Science, 2015, 51: 2878-2882. [31] Kalani H, Akbarzadeh A, Nabavi SN, et al. Dynamic modeling and CPG-based trajectory generation for a masticatory rehab robot [J]. Intelligent Service Robotics, 2018, 11(2): 187-205. [32] She X, Wei F, Damon BJ, et al. Three-dimensional temporomandibular joint muscle attachment morphometry and its impacts on musculoskeletal modeling [J]. J Biomech, 2018, 79: 119-128. [33] Commisso MS, Martínez-Reina J, Ojeda J, et al. Finite element analysis of the human mastication cycle [J]. J Mech Behav Biomed Mater, 2015, 41: 23-35. [34] Vilimek M, Horak Z, Baca V. Force ratio in masticatory muscles after total replacement of the temporomandibular joint [J]. Acta Bioeng Biomech, 2016, 18(3):131-136. [35] 王贵飞,丛明,徐卫良,等.咀嚼机器人合运循环规划及驱动力优化分配方法[J].机器人,2017,39(1):72-82. [36] 贾梦莹,邵博,辜文妍,等.单侧后牙正锁牙合、关节弹响与咀嚼肌肌电的相关性研究[J].口腔医学研究,2018,34(3): 262-265. [37] Tewksbury CD, Callaghan KX, Fulks BA, et al. Individuality of masticatory performance and of masticatory muscle temporal parameters [J]. Arch Oral Biol, 2018, 90: 113-124. [38] Komino M, Shiga H. Changes in mandibular movement during chewing of different hardness foods [J]. Odontology, 2017, 105(4): 418-425. [39] Kalani H, Moghimi S, Akbarzadeh A. Towards an SEMG-based tele-operated robot for masticatory rehabilitation [J]. Comput Biol Med, 2016, 75: 243-256. [40] Röhrle O, Saini H, Ackland DC. Occlusal loading during biting from an experimental and simulation point of view [J]. Dent Mater, 2018, 34(1): 58-68. [41] Dai F, Wang L, Chen G, et al. Three-dimensional modeling of an individualized functional masticatory system and bite force analysis with an orthodontic bite plate [J]. Int J Comput Assist Radiol Surg, 2016, 11(2): 217-229. |