[1] Berger D, Rakhamimova A, Pollack A, et al. Development, control, and analysis[J]. Oral Biofilms, 2018,7(3):24. [2] Liu K, Yao X, Jiang L. Recent developments in bio-inspired special wettability[J]. Chem Soc Rev, 2010, 39:3240-3255. [3] 李淑一.仿生结构化超疏水表面的构筑与抗菌应用[D].吉林大学,2018. [4] Urata C, Cheng D, Masheder B, et al. Smooth, transparent and nonperfluorinated surfaces exhibiting unusual contact angle behavior toward organic liquids[J]. RSC Adv, 2012, 2(26): 9805-9808. [5] Han D, Steckl AJ. Superhydrophobic and oleophobic fibers by coaxial electrospinning[J]. Langmuir, 2009, 25(16):9454-9462. [6] Whyman G, Bonnashenko E. How to make the Cassie wetting state stable[J]. Langmuir, 2011, 27(13):8171-8176. [7] Sun M, Luo C, Xu L, et al. Artificial lotus leaf by nanocasting[J]. Langmuir, 2005, 21(19):8978-8981. [8] Pernites RB, Santos CM, Maldonado M, et al. Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films[J]. Chem Mater, 2012, 24: 870-880. [9] Parkin IP, Palgrave RG. Self-cleaning coatings[J]. J Mater Chem, 2005, 15:1689-1695. [10] Dou XQ, Zhang D, Feng C, et al. Bioinspired hierarchical surface structures with tunable wettability for regulating bacteria adhesion[J]. ACS nano, 2015, 9(11):10664-10672. [11] Qi M, Chi M, Sun X, et al. Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases[J]. Int J Nanomedicine, 2019,14:6937-6956. [12] Zhu X, Wang Z, Wang Y. Formation of dental plaque biofilm on different titanium surfaces and evaluate antimicrobial effects of mouthrinses on dental plaque biofilm[J]. J Wuhan Univ Technol Mater Sci Ed, 2019, 34(2):465-471. [13] Crick CR, Ismail S, Pratten J, et al. An investigation into bacterial attachment to a lastomeric superhydrophobic surface prepared via aerosol assisted deposition[J]. Thin Solid Films, 2011, 519(11): 3722-3727. [14] Hairul Islam MI, Arokiyaraj S, Kuralarasan M, et al. Inhibitory potential of EGCG on Streptococcus mutans biofilm: A new approach to prevent Cariogenesis[J]. Microb Pathog, 2020,143:104-129. [15] Lar U, Dibal H, Krzysztof S. Fluoride in groundwater in Nigeria: Origin and health impact[J]. AJEP, 2014, 319:66-69. [16] 张玲,王绮,张炜.儿童龋病预防方法的研究进展[J].临床合理用药杂志,2014,7(17):174-175. [17] Kuwahara N, Hiratsuka K, Taguchi C, et al. Evaluation of dental caries and concomitant infection based on the ratio of cariogenic bacteria using plaque samples in adults[J]. Dentistry, 2017, 7:11. [18] Liljemark WF, Bloomquist C. Humanoral microbialecology and dental caries and Periodontal disease[J]. Crit Rev Oral Biol Med, 1996, 7:180-198. [19] 刘继光,董波,夏春杰.超疏水纳米膜对变形链球菌在羟基磷灰石表面粘附的影响[J].黑龙江医药科学, 2008, 31(5):3-4. [20] 殷佳莉,唐旭炎,李全利,等.超疏水釉质表面抑制黏蛋白吸附和细菌粘附[J].安徽医科大学学报, 2016, 51(9):1273-1276. [21] 金小婷,史诗,陈欢欢,等.釉质表面超疏水凝胶纳米涂层的制备及其性能研究[J].口腔医学研究,2020,36(6):585-590. [22] Pernites RB, Santos CM, Maldonado M, et al. Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films[J]. Chem Mater, 2012, 24: 870-880. [23] Nikawa H, Hamada T, Yamashiro H, et al. A review of in vitro and in vivo methods to evaluate the efficacy of denture cleansers[J]. Int J Prosthodont, 2015, 12(2):153. [24] Aba Y, Sato Y, Owada G, et al. Effectiveness of a combination denture-cleaning method versus a mechanical method: comparison of denture cleanliness, patient satisfaction, and oral health-related quality of life[J]. J Prosthodont Res, 2018, 62(3):353-358. [25] Duyck J, Vandamme K, Krausch-Hofmann S, et al. Impact of denture cleaning method and overnight storage condition on denture biofilm mass and composition: A cross-over randomized clinical trial[J]. PLoS One, 2016, 11(1):e0145837. [26] 陈荣荣.添加不同抗菌剂的纳米增强义齿基托树脂对变形链球菌粘附性能的影响[J].口腔材料器械杂志, 2013, 22(3):126-130. [27] Qiuli C, Danfeng C, Xiuju L, et al. Superhydrophobic coatings with self-cleaning and antibacterial adhesion properties for denture base[J]. J Mech Behav Biomed Mater, 2019, 98:148-156. [28] Liu T, Xu C, Hong L, et al. Effects of trimethylsilane plasma coating on the hydrophobicity of denture base resin and adhesion of Candida albicans on resin surfaces[J]. J Prosthet Dent, 2017,118(6):765-770. [29] Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial[J]. Adv Mater, 2002, 14:1857-1860. [30] Yan YY, Gao N, Barthlott W. Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces[J]. Adv Colloid Interf Sci, 2011, 169:80-105. [31] Amasyali M, Enhos S, Uysal T, et al. Effect of a self-etching adhesive containing an antibacterial monomer on clinical periodontal parameters and subgingival microbiologic composition in orthodontic patients[J]. Am J Orthod Dentofacial Orthop, 2011,140(4): e147-e153. [32] Oliveira Adauê S, Kaizer Marina R, Azevedo Marina S, et al. (Super)hydrophobic coating of orthodontic dental devices and reduction of early oral biofilm retention[J]. Biomed Mater, 2015, 10(8):329-338. [33] Türkkahraman H, Sayin MO, Bozkurt FY, et al. Archwire ligation techniques, microbial colonization and periodontal status in orthodontically treated patients[J]. Angle Orthod, 2005, 75(2):231-236. [34] Ephros H, Kim S, DeFalco R. Peri-implantitis: evaluation and management[J]. Dent Clin North Am, 2020, 64(2):305-313. [35] Leppäniemi J, Hoshian S, Suomalainen K, et al. Non-stick properties of thin-film coatings on dental-restorative instruments[J]. Eur J Oral Sci, 2017, 125:495-503. [36] Lorenzetti M, Dogsa I, Stosicki T, et al. The influence of surface modification on bacterial adhesion to titanium-based substrates[J]. ACS Appl Mater Inter, 2015, 7(3):1644-1651. [37] Zhang XX, Wang L, Levänen E. Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Adv, 2013, 3(30):12003-12020. [38] Tang P, Zhang W, Wang Y, et al. Effect of superhydrophobic surface of titanium on staphylococcus aureus adhesion[J]. J Nanomaterials. 2011,2011:1789. |