口腔医学研究 ›› 2020, Vol. 36 ›› Issue (3): 230-234.DOI: 10.13701/j.cnki.kqyxyj.2020.03.010

• 修复材料抗菌性研究 • 上一篇    下一篇

不同管径二氧化钛纳米管的抗菌性能研究

许志强1*, 曾秀峰2, 洪少楠1, 曾秀霞3, 贺于奇1, 黄俊徽1   

  1. 1. 福建医科大学莆田学院附属医院教学医院,南方医科大学附属莆田医院,莆田学院附属医院口腔科 福建 莆田 351100;
    2. 涵江曾秀峰口腔诊所 福建 莆田 351117;
    3. 莆田涵江医院口腔科 福建 莆田 351100
  • 收稿日期:2019-11-15 出版日期:2020-05-15 发布日期:2020-05-15
  • 通讯作者: 许志强,E-mail:dentistzq@sina.com
  • 作者简介:许志强(1984~),男,福建莆田人,博士,副主任医师,主要从事口腔临床及科研工作。
  • 基金资助:
    福建省自然科学基金(编号:2017J01227);福建省卫生计生中青年骨干人才培养项目(2017-ZQN-79);莆田市科技计划项目(编号:2018S3F007)

Antibacterial Properties of Titania Nanotubes with Different Diameters

XU Zhiqiang1*, ZENG Xiufeng2, HONG Shaonan1, ZENG Xiuxia3, HE Yuqi1, HUANG Junhui1   

  1. 1. Department of Stomatology, Teaching Hospital of Fujian Medical University &Affiliated Putian Hospital of Southern Medical University &Affiliated Hospital of Putian University, Putian Fujian, 351100, China;
    2. Hanjian Zengxiufeng Clinic, Putian Fujian, 351117, China;
    3. Department of Stomatology, Putian Hanjian Hospital, Putian Fujian, 351100, China
  • Received:2019-11-15 Online:2020-05-15 Published:2020-05-15

摘要: 目的:探讨不同管径二氧化钛纳米管的抗菌性能。方法:通过电化学阳极氧化法,在10、30和60 V三组电压下,于纯钛表面制备了3组二氧化钛纳米管NT10、NT30和NT60。扫描电镜观察试样的表面形貌,X射线衍射仪检测其晶体结构,接触角测试仪测量其接触角,原子力显微镜观察试样的表面形貌并比较表面粗糙度。将金黄色葡萄球菌和牙龈卟啉单胞菌接种到不同材料表面,扫描电镜观察菌落形态,活细菌平板计数活菌数。结果:3组二氧化钛纳米管的管径分别约为30 nm(NT10)、100 nm(NT30)和200 nm(NT60),X射线衍射结果显示3种二氧纳米管均出现了锐钛矿的衍射峰,接触角检测结果显示3种二氧化钛纳米管的接触角随着管径的增加而减小,原子力显微镜检测结果显示3组纳米管的粗糙度值均明显变小(其中NT30展示出最小的粗糙度值)。3种不同管径纳米管的表面活细菌数均明显减少,其中表面粘附金黄色葡萄球菌最少的是NT60,表面粘附牙龈卟啉单胞菌最少的是NT30。结论:纯钛表面纳米化制备二氧化钛纳米管后均不同程度地抑制了细菌的粘附。

关键词: 二氧化钛纳米管, 抗菌性能, 金黄色葡萄球菌, 牙龈卟啉单胞菌

Abstract: Objective: study the antibacterial properties of titania nanotubes with three different diameters. Methods: Titania nanotubes with three different diameters were fabricated on titanium surfaces through electrochemical anodization at 10, 30, and 60 V (denoted as NT10, NT30, and NT60). The sample topography was assessed with SEM. The crystalline phase analysis was conducted using X-ray diffractomer. Contact angle measurements were examined using a contact angle measuring system, and roughness was examined using atomic force microscope. The antibacterial properties of titania nanobues were evaluated by in vitro co-culture with Staphylococcus aureus and Porphyromonas Gingivalis. The live bacteria were observed with SEM and quantitated by the plate-counting method. Results: The diameters of titania nanotubes were about 30 nm (NT10), 100 nm (NT30), and 200 nm (NT60), respectively. All three types of nanotubes had anatase peaks as indicated by X-ray diffractomer. The contact angles on nanotubes were smaller than those on the control titanium, and reached the lowest on NT60. The roughness values of the nanotubes were smaller than those of control titanium, and reached the lowest on NT30. The bacterial on the titania nanotubes were significantly decreased when compared to the titanium. The adhesion of Staphylococcus aureus reached the lowest on NT60, and the adhesion of Porphyromonas Gingivalis reached the lowest on NT30. Conclusion: The titania nanotubes fabricated on the surface of titanium all inhibited the adhesion of bacteria to some extent.

Key words: titania nanotubes, antibacterial properties, staphylococcus aureus, porphyromonas gingivalis