[1] Castellanos-Cosano L, Rodriguez-Perez A, Spinato S, et al. Descriptive retrospective study analyzing relevant factors related to dental implant failure [J]. Med Oral Patol Oral Cir Bucal, 2019, 24(6):e726-e738. [2] Aghaloo T, Pi-Anfruns J, Moshaverinia A, et al. The effects of systemic diseases and medications on implant osseointegration: A systematic review [J]. Int J Oral Maxillofac Implants, 2019, 34:s35-s49. [3] Judex S, Lei X, Han D, et al. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude [J]. Biomech, 2007, 40(6):1333-1339. [4] Holguin N, Muir J, Rubin C, et al. Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended bed rest [J]. Spine J, 2009, 9(6):470-477. [5] Rubin C, Turner AS, Bain S, et al. Anabolism. Low mechanical signals strengthen long bones [J]. Nature, 2001,412(6847):603-604. [6] Ota T, Chiba M, Hayashi H. Vibrational stimulation induces osteoblast differentiation and the upregulation of osteogenic gene expression in vitro [J]. Cytotechnology, 2016, 68(6):2287-2299. [7] Birmingham E, Kreipke TC, Dolan EB, et al. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants [J]. Ann Biomed Eng, 2015, 43(4):1036-1050. [8] Lau E, Al-Dujaili S, Guenther A, et al. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts [J]. Bone, 2010, 46(6):1508-1515. [9] Krishnamoorthy D, Frenchette DM, Adler BJ, et al. Marrow adipogenesis and bone loss that parallels estrogen deficiency is slowed by low-intensity mechanical signals [J]. Osteoporos Int, 2016, 27(2): 747-756. [10] Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells [J]. Birth Defects Res C Embryo Today, 2010, 90(1):75-85. [11] Shih TT, Liu HC, Chang CJ, et al. Correlation of MR lumbar spine bone marrow perfusion with bone mineral density in female subjects [J]. Radiology, 2004, 233(1): 121-128. [12] Wu XT, Sun LW, Qi HY, et al. The bio-response of osteocytes and its regulation on osteoblasts under vibration [J]. Cell Biol Int, 2016, 40(4):397-406. [13] Premaraj S, Souza I, Premaraj T. Mechanical loading activates beta-catenin signaling in periodontal ligament cells [J]. Angle Orthod, 2011,81(4):592-599. [14] Chen B, Lin T, Yang X, et al. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/beta-catenin signaling pathway activation [J]. Int J Mol Med, 2016, 38(5):1531-1540. [15] Uzer G, Thompson WR, Sen B, et al. Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus [J]. Stem Cells, 2015, 33(6):2063-2076. [16] Pichler K, Loreto C, Leonardi R, et al. RANKL is downregulated in bone cells by physical activity ( treadmill and vibration stimulation training) in rat with glucocorticoidinduced osteoporosis [J]. Histol Histopathol, 2013, 28(9):1185-1196. [17] Zhou Y, Guan X, Liu HW, et al. Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway [J]. Bone, 2015, 71:17-24. [18] Li M, Wu W, Tan L, et al. Low-magnitude mechanical vibration regulates expression of osteogenic proteins in ovariectomized rats [J]. Biochem Biophys Res Commun, 2015, 465(3):344-348. [19] Rand A, Stiesch M, Eidenburger M, et al. The effect of direct and indirect force transmission on peri-implant bone stress-a contact finite element analysis [J]. Comput Methods Biomech Biomed Eng, 2017,20(10):1132-1139. [20] Ogawa T, Zhang X, Naert I, et al. The effect of whole-body vibration on peri-implant bone healing in rats [J]. Clin Oral Implants Res, 2011, 22(3):302-307. [21] Ogawa T, Vandamme K, Zhang X, et al. Stimulation of titanium implant osseointegration through high-frequency vibration loading is enhanced when applied at high acceleration [J]. Calcif Tissue Int, 2014, 95(5): 467-475. [22] Liang YQ, Qi MC, Xu J, et al. Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats [J]. Mol Med Rep, 2014, 10(6):2835-2842. [23] Zhang C, Lu Y, Zhang L, et al. Influence of different intensities of vibration on proliferation and differentiation of human periodontal ligament stem cells [J]. Arch Med Sci, 2015,11(3):638-646. [24] Ogawa T, Possemiers T, Zhang X, et al. Influence of whole-body vibration time on peri-implant bone healing: a histomorphometrical animal study [J]. J Clin Periodontol, 2011, 38(2):180-185. [25] Wang S, Ogawa T, Zheng S, et al. The effect of low-magnitude high-frequency loading on peri-implant bone healing and implant osseointegration in Beagle dogs [J]. J Prosthodont Res, 2018, 62(4):497-502. [26] Zhang X, Torcasio A, Vandamme K, et al. Enhancement of implant osseointegration by high-frequency low-magnitude loading [J]. PLoS One, 2012, 7(7):e40488. [27] Wang S, Liu Y, Tang Y, et al. Direct radial LMHF microvibration induced bone formation and promoted implant osseointegration [J]. Clin Implant Dent Relat Res, 2016, 18(2):401-409. [28] 夏维波,章振林,林华,等.原发性骨质疏松症诊疗指南(2017)[J].中国骨质疏松杂志,2019,25(3):281-309. [29] Javed F, Ahmed HB, Crespi R, et al. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation [J]. Interv Med Appl Sci, 2013, 5(4):162-167. [30] Rubin C, Judex S, Qin YX, et al. Low-level mechanical signals and their potential as a non-pharmacological intervention for osteoporosis [J]. Age Ageing,2006,35(2): 132-136. [31] Chatterjee M, Hatori K, Duyck J, et al. High-frequency loading positively impacts titanium implant osseointegration in impaired bone [J]. Osteoporos Int, 2015, 26(1):281-290. [32] Shibamoto A, Ogawa T, Duyck J, et al. Effect of high-frequency loading and parathyroid hormone administration on peri-implant bone healing and osseointegration [J]. Int J Oral Sci, 2018,10(1):6. [33] 陈子根.低强度脉冲超声波对骨质疏松种植体的临床研究[J].中国现代医生,2015,53(16):1-3. [34] Xie P, Tang Z, Qing F, et al. Bone mineral density,microarchitectural and mechanical alterations of osteoporotic rat bone under long-term whole-body vibration therapy [J]. Mech Behav Biomed Mater, 2016, 53:341-349. [35] 裴卫卫,陈建庭,郑锦畅,等.复合振动仪治疗原发骨质疏松症的短期临床疗效观察[J].中国骨质疏松杂志,2009,15(9):657-660. [36] Wang J, Leung KS, Chow SK, et al. The effect of whole body vibration on fracture healing-a systematic review [J]. Eur Cell Mater, 2017, 34:108-127. [37] Oliveira LC, Oliveira RG, Pires-Oliveira DA. Effects of whole body vibration on bone mineral density in postmenopausal women: a systematic review and meta-analysis [J]. Osteoporos Int, 2016, 27(10):2913-2933. [38] Jepsen DB, Thomsen K, Hansen S, et al. Effect of whole-body vibration exercise in preventing falls and fractures: a systematic review and meta-analysis [J]. BMJ Open, 2017, 7(12):e18342. |