[1] Lu YX. Significance and progress of bionics [J]. J Bionic Eng, 2004, 1(1): 1-3. [2] Coxson GE. Biosonar inspiration for radar waveform design [J]. J Acoust Soc Am, 2019, 145(3): 1700. [3] Gemmell BJ, Dabiri JO, Colin SP, et al. Cool your jets: biological jet propulsion in marine invertebrates [J]. J Exp Biol, 2021, 224(12): jeb222083. [4] 张之南.医学发展的条件和影响——谈医学与其他学科的关系[J].医学与哲学,1985,(7):1-4+57. [5] 解启莲,胡盛寿.仿生医学——一个新的医学理论体系的创立[J].医学与哲学,2005,26(7):73-74. [6] Goharshenas Moghadam S, Parsimehr H, Ehsani A. Multifunctional superhydrophobic surfaces [J]. Adv Colloid Interface Sci, 2021, 290: 102397. [7] Xu S, Wang Q, Wang N. Chemical fabrication strategies for achieving bioinspired superhydrophobic surfaces with micro and nanostructures: A review [J]. Advanced Engineering Materials, 2021, 23(3): 2001083. [8] 麻健丰,金小婷.超疏水材料在口腔医学中的应用[J].口腔医学研究,2020,36(9):803-807. [9] Cheng Q, Cao D, Liu X, et al. Superhydrophobic coatings with self-cleaning and antibacterial adhesion properties for denture base [J]. J Mech Behav Biomed Mater, 2019, 98: 148-156. [10] Souza JGS, Bertolini M, Costa RC, et al. Targeting pathogenic biofilms: newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface [J]. ACS Appl Mater Interfaces, 2020, 12(9): 10118-10129. [11] Lin CW, Hsieh PY, Chou CM, et al. Femtosecond laser surface roughening and pulsed plasma polymerization duplex treatment on medical-grade stainless steel substrates for orthodontic purpose [J]. Surf Coat Technol, 2021, 427: 127819. [12] Zhao S, Yang X, Xu Y, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions [J]. Nano Res, 2022, 15: 5245-5255. [13] Barua R, Datta S, Roychowdhury A, et al. Importance of 3D printing technology in medical fields [M]//Research anthology on emerging technologies and ethical implications in human enhancement. IGI Global, 2021: 704-717. [14] 白石柱,张生睿,钟声,等.3D打印及其在口腔医学中的应用(一)——3D打印技术的工作原理[J].实用口腔医学杂志,2022,38(1):136-140. [15] Cosyn J, De Lat L, Seyssens L, et al. The effectiveness of immediate implant placement for single tooth replacement compared to delayed implant placement: a systematic review and meta-analysis [J]. J Clin Periodontol, 2019, 46 Suppl 21: 224-241. [16] Guo F, Hu M, Wang C, et al. Studies on the performance of molar porous root-analogue implant by finite element model simulation and verification of a case report [J]. J Oral Maxillofac Surg, 2020, 78(11): 1965. e1-1965. e9. [17] Lanza A, Ruggiero A, Sbordone L. Tribology and dentistry: A commentary [J]. Lubricants, 2019, 7(6): 52. [18] 孙玉春,郭雨晴,陈虎,等.口腔精准仿生修复技术的自主创新研发与转化[J].北京大学学报(医学版),2022,54(1):7-12. [19] Li R, Wang Y, Hu M, et al. Strength and adaptation of stereolithography-fabricated zirconia dental crowns: an in vitro study [J]. Int J Prosthodont, 2019, 32(5): 439-443. [20] Li R, Chen H, Wang Y, et al. Suitability of the triple-scan method with a dental laboratory scanner to assess the 3D adaptation of zirconia crowns [J]. J Prosthet Dent, 2021, 125(4): 651-656. [21] Li R, Chen H, Wang Y, et al. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs [J]. J Mech Behav Biomed Mater, 2021, 115: 104255. [22] 牛丽娜,焦凯,方明,等.仿生修复技术在口腔颌面部硬组织缺损修复中的应用进展[J].华西口腔医学杂志,2021,39(2):129-135. [23] Zhao Q, Li G, Wang T, et al. Human periodontal ligament stem cells transplanted with nanohydroxyapatite/chitosan/gelatin 3D porous scaffolds promote jaw bone regeneration in swine [J]. Stem Cells Dev, 2021, 30(10): 548-559. [24] Sun H, Hu C, Zhou C, et al. 3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair [J]. Materials and Design, 2020, 189: 108540. [25] 黄翠,刘英衡.口腔粘接与粘固的区别和联系[J].口腔医学研究,2021,37(5):381-385. [26] Xiao Z, Zhao Q, Niu Y, et al. Adhesion advances: from nanomaterials to biomimetic adhesion and applications [J]. Soft Matter, 2022, 18(18):3447-3464. [27] Ryu JH, Choi JS, Park E, et al. Chitosan oral patches inspired by mussel adhesion [J]. J Control Release, 2020, 317: 57-66. [28] Lee SB, Gonzlez-Cabezas C, Kim KM, et al. Catechol-functionalized synthetic polymer as a dental adhesive to contaminated dentin surface for a composite restoration [J]. Biomacromolecules, 2015, 16(8): 2265-2275. [29] Lee D, Bae H, Ahn J, et al. Catechol-thiol-based dental adhesive inspired by underwater mussel adhesion [J]. Acta Biomaterialia, 2020, 103: 92-101 [30] Bilodeau EA, Lalla RV. Recurrent oral ulceration: Etiology, classification, management, and diagnostic algorithm [J]. Periodontology 2000, 2019, 80(1): 49-60. [31] Wei L, Wu S, Shi W, et al. Large-scale and rapid preparation of nanofibrous meshes and their application for drug-loaded multilayer mucoadhesive patch fabrication for mouth ulcer treatment [J]. CS Appl Mater Interfaces, 2019, 11(32): 28740-28751. [32] Mao Y, Xu Z, He Z, et al. Wet-adhesive materials of oral and maxillofacial region: From design to application [J]. Chinese Chemical Letters, 2022. [33] Xing J, Ding Y, Zheng X, et al. Barnacle-inspired robust and aesthetic janus patch with instinctive wet adhesive for oral ulcer treatment [J]. Chemical Engineering Journal, 2022: 136580. [34] Hu S, Pei X, Duan L, et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery [J]. Nat Commun, 2021, 12(1): 1689. [35] Schierz O, Baba K, Fueki K. Functional oral health-related quality of life impact: A systematic review in populations with tooth loss [J]. J Oral Rehabil, 2021, 48(3): 256-270. [36] Fan L, Guan P, Xiao C, et al. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration [J]. Bioact Mater, 2021, 6(9): 2754-2766. [37] Jennes ME, Naumann M, Peroz S, et al. Antibacterial effects of modified implant abutment surfaces for the prevention of peri-implantitis-A systematic review.[J]. Antibiotics (Basel), 2021, 10(11): 1350. [38] Flanagan D. Osseous remodeling around dental implants [J]. J Oral Implantol, 2019, 45(3): 239-246. [39] 蒋欣泉.仿生策略用于口腔颌面部骨再生与牙种植的研究进展[J].华西口腔医学杂志,2021,39(2):123-128 [40] Geng Z, Li Z, Cui Z, et al. Novel bionic topography with MiR-21 coating for improving bone-implant integration through regulating cell adhesion and angiogenesis [J]. Nano Lett, 2020, 20(10): 7716-7721. [41] O’Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration [J]. Drug Discov Today, 2018, 23(4): 879-890. [42] Fu X, Liu P, Zhao D, et al. Effects of nanotopography regulation and silicon doping on angiogenic and osteogenic activities of hydroxyapatite coating on titanium implant [J]. Int J Nanomedicine, 2020, 15: 4171-4189. [43] Wang Z, Zhou Z, Fan J, et al. Hydroxypropylmethylcellulose as a film and hydrogel carrier for ACP nanoprecursors to deliver biomimetic mineralization [J]. J Nanobiotechnology, 2021, 19(1): 385. [44] Li J, Yang JJ, Li J, et al. Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer [J]. Biomaterials, 2013, 34(28): 6738-6747. [45] 胡蝶,张凌琳.口腔来源蛋白及多肽诱导牙釉质仿生矿化的研究进展[J].口腔医学研究,2019,35(6):517-520. [46] 向科臻,陈亮,杨德琴.基于聚酰胺——胺树枝状聚合物的牙体硬组织仿生再矿化的研究进展[J].华西口腔医学杂志,2020,38(6):692-696. [47] Fan M, Zhang M, Xu HHK, et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro [J]. Dent Mater, 2020, 36(2): 210-220. [48] Nimbeni SB, Nimbeni BS, Divakar DD. Role of chitosan in remineralization of enamel and dentin: A systematic review [J]. Int J Clin Pediatr Dent, 2021, 14(4): 562-568. [49] Muat V, Anghel EM, Zaharia A, et al. A chitosan-agarose polysaccharide-based hydrogel for biomimetic remineralization of dental enamel [J]. Biomolecules, 2021, 11(8): 1137. [50] Song J, Li T, Gao J, et al. Building an aprismatic enamel-like layer on a demineralized enamel surface by using carboxymethyl chitosan and lysozyme-encapsulated amorphous calcium phosphate nanogels [J]. J Dent, 2021, 107: 103599. |