[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.. [2] Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer [J]. Nat Rev Cancer, 2011, 11(1):9-22. [3] Atashi F, Vahed N, Emamverdizadeh P, et al. Drug resistance against 5-fluorouracil and cisplatin in the treatment of head and neck squamous cell carcinoma: A systematic review [J]. J Dent Res Dent Clin Dent Prospects, 2021, 15(3):219-225. [4] de Bem Prunes B, Nunes JS, da Silva VP, et al. The role of tumor acidification in aggressiveness, cell dissemination and treatment resistance of oral squamous cell carcinoma [J]. Life Sci, 2022, 288: 120163. [5] Sun L, Wang D, Chen Y, et al. Core-shell hierarchical mesostructured silica nanoparticles for gene/chemo-synergetic stepwise therapy of multidrug-resistant cancer [J]. Biomaterials, 2017, 133:219-228. [6] Halder J, Pradhan D, Kar B, et al. Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer [J]. Nanomedicine, 2022, 40:102494. [7] Zheng DW, Deng WW, Song WF, et al. Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma [J]. Nat Biomed Eng, 2022, 6(1):32-43. [8] Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine [J]. Science, 2017, 357(6356):1156-1160. [9] Cohen EEW, Soulières D, Le Tourneau C, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study [J]. Lancet, 2019, 393(10167):156-167. [10] Li Q, Hu Y, Zhou X, et al. Role of oral bacteria in the development of oral squamous cell carcinoma [J]. Cancers (Basel), 2020, 12(10):2797. [11] tasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis[J]. Semin Cancer Biol, 2022, 86(Pt 3):633-642. [12] Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions [J]. Nat Rev Microbiol, 2018, 16(12):745-759. [13] Tuganbaev T, Yoshida K, Honda K. The effects of oral microbiota on health [J]. Science, 2022, 376(6596):934-936. [14] Binder Gallimidi A, Fischman S, Revach B, et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model [J]. Oncotarget, 2015, 6(26):22613-22623. [15] Lafuente Ibáñez de Mendoza I, Maritxalar Mendia X, García de la Fuente AM, et al. Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: A systematic review [J]. J Periodontal Res, 2019, 55(1):13-22. [16] Woo BH, Kim DJ, Choi JI, et al. Oral cancer cells sustainedly infected with Porphyromonas gingivalis exhibit resistance to Taxol and have higher metastatic potential [J]. Oncotarget, 2017, 8(29):46981-46992. [17] Gao S, Liu Y, Duan X, et al. Porphyromonas gingivalis infection exacerbates oesophageal cancer and promotes resistance to neoadjuvant chemotherapy [J]. Br J Cancer, 2021, 125(3):433-444. [18] Yuan X, Liu Y, Kong J, et al. Different frequencies of Porphyromonas gingivalis infection in cancers of the upper digestive tract [J]. Cancer Lett, 2017, 404:1-7. [19] Bergonzini C, Gregori A, Hagens TMS, et al. ABCB1 overexpression through locus amplification represents an actionable target to combat paclitaxel resistance in pancreatic cancer cells [J]. J Exp Clin Cancer Res, 2024, 43(1):4. |