[1] Liu H, Shi Y, Zhu Y, et al. Bioinspired piezoelectric periosteum to augment bone regeneration via synergistic immunomodulation and osteogenesis [J]. ACS Appl Mater Interfaces, 2023, 15(9):12273-12293. [2] Dellacherie MO, Seo BR, Mooney DJ. Macroscale biomaterials strategies for local immunomodulation [J]. Nat Rev Mater, 2019, 4(6): 379-397. [3] Nakkala JR, Li Z, Ahmad W, et al. Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases [J]. Acta Biomater, 2021, 123:1-30. [4] Su N, Villicana C, Yang F. Immunomodulatory strategies for bone regeneration: A review from the perspective of disease types [J]. Biomaterials, 2022, 286:121604. [5] Zhao C, Liu W, Zhu M, et al. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review [J]. Bioact Mater, 2022, 18:383-398. [6] Li T, Wang P, Guo W, et al. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application [J]. ACS Nano, 2019, 13(6): 6770-6781. [7] Bose S, Sarkar N, Banerjee D. Natural medicine delivery from biomedical devices to treat bone disorders: A review [J]. Acta Biomater, 2021, 126:63-91. [8] Yang W, Xie D, Liang Y, et al. Multi-responsive fibroin-based nanoparticles enhance anti-inflammatory activity of kaempferol [J]. J Drug Deliv Sci Technol, 2022, 68:103025. [9] Zhao J, Ling L, Zhu W, et al. M1/M2 re-polarization of kaempferol biomimetic NPs in anti-inflammatory therapy of atherosclerosis [J]. J Control Release, 2023, 353:1068-1083. [10] Mao Y, Chen Y, Li W, et al. Physiology-inspired multilayer nanofibrous membranes modulating endogenous stem cell recruitment and osteo-differentiation for staged bone regeneration [J]. Adv Healthc Mater, 2022, 11(21): e2201457. [11] Wu G, Ma X, Fan L, et al. Accelerating dermal wound healing and mitigating excessive scar formation using LBL modified nanofibrous mats [J]. Materials Design, 2020, 185:108265. [12] Kundu B, Rajkhowa R, Kundu SC, et al. Silk fibroin biomaterials for tissue regenerations [J]. Adv Drug Deliv Rev, 2013, 65(4): 457-470. [13] 武郭敏.改良丝素蛋白/聚己内酯纳米纤维膜的制备及其皮肤再生或骨再生性能的研究[D].武汉大学,2020. [14] 李荣俊.控释地塞米松和BMP-2的玉米醇溶蛋白/聚乳酸纳米纤维支架对骨髓间充质干细胞成骨分化及骨再生的实验研究[D].吉林大学,2018. [15] Mestres G, Carter SD, Hailer NP, et al. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials [J]. Acta Biomater, 2021, 130:115-137. [16] He Z, Liu S, Li Z, et al. Coaxial TP/APR electrospun nanofibers for programmed controlling inflammation and promoting bone regeneration in periodontitis-related alveolar bone defect models [J]. Mater Today Bio, 2022, 16:100438. [17] Cerqueni G, Scalzone A, Licini C, et al. Insights into oxidative stress in bone tissue and novel challenges for biomaterials [J]. Mater Sci Eng C Mater Biol Appl, 2021, 130:112433. [18] Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease [J]. Nat Rev Immunol, 2019, 19(10): 626-642. [19] 张雅雯,邵东燕,师俊玲,等. 山奈酚生物功能研究进展[J].生命科学,2017,29(4): 400-405. [20] Koelwyn GJ, Corr EM, Erbay E, et al. Regulation of macrophage immunometabolism in atherosclerosis [J]. Nat Immunol, 2018, 19(6): 526-537. [21] Victor VM, Rocha M, Solá E, et al. Oxidative stress, endothelial dysfunction and atherosclerosis [J]. Curr Pharm Des, 2009, 15(26): 2988-3002. [22] Zhang F, Wang H, Wang X, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype [J]. Oncotarget, 2016, 7(32): 52294-52306. [23] 刘镕,赵琴平,董惠芬,等.TGF-β信号传导通路及其生物学功能[J].中国病原生物学杂志,2014,9(1): 77-83. [24] Weivoda MM, Ruan M, Pederson L, et al. Osteoclast TGF-β receptor signaling induces wnt1 secretion and couples bone resorption to bone formation [J]. J Bone Miner Res, 2016, 31(1): 76-85. |