[1] Ruengrungsom C, Palamara J, Burrow M. Comparison of ART and conventional techniques on clinical performance of glass-ionomer cement restorations in load bearing areas of permanent and primary dentitions: A systematic review[J]. J Dent, 2018, 78:1-21. [2] Farrugia C, Camilleri J. Antimicrobial properties of conventional restorative filling materials and advances in antimicrobial properties of composite resins and glass ionomer cements-A literature review [J]. Dent Mater, 2015, 31(4):e89-e99. [3] Paiva L, Fidalgo TKS, da Costa LP, et al. Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (Nano-Ag-GIC) [J]. J Dent, 2018, 69:102-109. [4] 刘莉霞,陈琳.玻璃离子水门汀加入二氧化钛纳米颗粒后的机械与抑菌性能[J].中国组织工程研究,2014,18(30):4838-4844. [5] Anusha Thampi VV, Prabhu M, Kavitha K, et al. Hydroxyapatite; alumina/zirconia; and nano-bioactive glass cement for tooth-restoring applications [J]. Ceram Int, 2014, 40(9; Part A) :14355-14365. [6] Ab Rahman I, Ghazali NAM, Bakar WZ, et al. Modification of glass ionomer cement by incorporating nanozirconia-hydroxyapatite-silica nano-powder composite by the one-pot technique for hardness and aesthetics improvement [J]. Ceram Int, 2017, 43(16): 13247-13253. [7] Boyd D, Towler MR. The processing; mechanical properties and bioactivity of zinc based glass ionomer cements [J]. J Mater Sci Mater Med, 2005, 16(9):843-850. [8] Silva RM, Pereira FV, Mota FA, et al. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals [J]. Mater Sci Eng C, 2016, 58:389-395. [9] Farooq I, Moheet IA, AlShwaimi E. In vitro dentin tubule occlusion and remineralization competence of various toothpastes [J]. Arch Oral Biol, 2015, 60(9):1246-1253. [10] Choudhary K, Nandlal B. Comparative evaluation of shear bond strength of nano-hydroxyapatite incorporated glass ionomer cement and conventional glass ionomer cement on dense synthetic hydroxyapatite disk: An in vitro study [J]. Indian J Dent Res, 2015, 26(2):170-175. [11] Hii SC, Luddin N, Kannan TP, et al. The biological evaluation of conventional and nano-hydroxyapatite-silica glass ionomer cement on dental pulp stem cells: A comparative study [J]. Contemp Clin Dent, 2019, 10(2):324-332. [12] Malik S, Ahmed MA, Choudhry Z, et al. Fluoride release from glass ionomer cement containing fluoroapatite and hydroxyapatite [J]. J Ayub Med Coll Abbottabad, 2018, 30(2):198-202. [13] Moshaverinia A, Ansari S, Moshaverinia M, et al. Effects of incorporation of hydroxyap- atite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC) [J]. Acta Biomater, 2008, 4(2): 432-440. [14] Sharafeddin F, Feizi N. Evaluation of the effect of adding micro-hydroxyapatite and nano-hydroxyapatite on the microleakage of conventional and resin-modified Glass-ionomer Cl V restorations [J]. J Clin Exp Dent, 2017, 9(2):e242-e248. [15] Krishnamurithy G, Mohan S, Yahya NA, et al. The physicochemical and biomechanical profile of forsterite and its osteogenic potential of mesenchymal stromal cells [J]. PLoS One, 2019, 14(3):e0214212 [16] Sayyedan FS, Fathi MH, Edris H, et al. Effect of forsterite nanoparticles on mechanical properties of glass ionomer cements [J]. Ceram Int, 2014, 407(Part B):10743-10748. [17] Fareed MA, Stamboulis A. Effect of nanoclay dispersion on the properties of a commercial glass ionomer cement [J]. Int J Biomater, 2014, 2014:685389. [18] Sasaki JI, Kiba W, Abe GL, et al. Fabrication of strontium-releasable inorganic cement by incorporation of bioactive glass [J]. Dent Mater, 2019, 35(5):780-788. [19] Garcia IM, Leitune VCB, Balbinot GS, et al. Influence of niobium pentoxide addition on the properties of glass ionomer cements [J]. Acta Biomater Odontol Scand, 2016, 2(1):138-143. [20] Klai S, Altenburger M, Spitzmuller B, et al. Antimicrobial effects of dental luting glass ionomer cements on Streptococcus mutans [J]. ScientificWorldJournal, 2014, 2014: 807086. [21] Mohammadi Z, Jafarzadeh H, Shalavi S. Antimicrobial efficacy of chlorhexidine as a root canal irrigant: a literature review [J]. J Oral Sci, 2014, 56(2):99-103. [22] Yan H, Yang H, Li K, et al. Effects of chlorhexidine-encapsulated mesoporous silica nano particles on the anti-biofilm and mechanical properties of glass ionomer cement [J]. Molecules, 2017, 22(7):1225. [23] Hook ER, Owen OJ, Bellis CA, et al. Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexameta-phosphate nanoparticles [J]. J Nanobiotechnology, 2014, 12:3. [24] Walsh T, Oliveira-Neto JM, Moore D. Chlorhexidine treatment for the prevention of dental caries in children and adolescents [J]. Cochrane Database Syst Rev, 2015, (4):CD008457. [25] Liu SY, Tonggu L, Niu LN, et al. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial [J]. Sci Rep, 2016, 6: 21882. [26] Beyth N, Houri-Haddad Y, Baraness-Hadar L, et al. Surface antimicrobial activity and biocompatibility of incorporated poly-ethylenimine nanoparticles [J]. Biomaterials, 2008, 29(31):4157-4163. [27] 黄芳,陈银燕,张瑜,等.季铵盐包裹溴化银纳米复合物改性玻璃离子水门汀的抗菌性能研究[J].牙体牙髓牙周病学杂志,2018,28(3):136-142. [28] Mulder R, Anderson-Small C. Ion release of chitosan and nano-diamond modified glass ionomer restorative cements [J]. Clin Cosmet Investig Dent, 2019, 11:313-320. [29] Debnath A, Kesavappa SB, Singh GP, et al. Comparative evaluation of antibacterial and adhesive properties of chitosan modified glass ionomer cement and conventional glass ionomer cement: an in vitro study [J]. J Clin Diagn Res, 2017, 11(3):ZC75-ZC78. [30] Senthil Kumar R, Ravikumar N, Kavitha S, et al. Nanochitosan modified glass ionomer cement with enhanced mechanical properties and fluoride release [J]. Int J Biol Macromol, 2017, 104(Pt B):1860-1865. [31] Zhou J, Xu Q, Fan C, et al. Characteristics of chitosan-modified glass ionomer cement and their effects on the adhesion and proliferation of human gingival fibroblasts: an in vitro study [J]. J Mater Sci Mater Med, 2019, 30(3):39. [32] Sun L, Yan Z, Duan Y, et al. Improvement of the mechanical; tribological and antibacterial properties of glass ionomer cements by fluorinated graphene [J]. Dent Mater, 2018, 34(6):e115-e127. [33] 孙兢,朱博武,杨蕾,等.纳米颗粒共掺杂对玻璃离子水门汀性能影响[J].口腔医学研究,2018,34(5):509-512. [34] Zhang YY, Wong HM, McGrath CPJ, et al. In vitro and in vivo evaluation of electrophoresis-aided casein phosphopeptide-amorphous calcium phosphate remineralisation system on pH-cycling and acid-etching demineralised enamel [J]. Sci Rep, 2018, 8(1):8904. [35] Zalizniak I, Palamara JE, Wong RH, et al. Ion release and physical properties of CPP-ACP modified GIC in acid solutions [J]. J Dent, 2013, 41(5):449-454. [36] Uo M, Wada T, Asakura K. Structural analysis of strontium in human teeth treated with surface pre-reacted glass-ionomer filler eluate by using extended X-ray absorption fine structure analysis [J]. Dent Mater J, 2017, 36(2):214-221. [37] Kim DA, Abo-Mosallam HA, Lee HY, et al. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses [J]. Mater Sci Eng C Mater Biol Appl, 2014, 42:665-671. [38] Shahid S, Hassan U, Billington RW, et al. Glass ionomer cements: Effect of strontium substitution on esthetics, radiopacity and fluoride release [J]. Dental Materials, 2014, 30(3):308-313. |