[1] 赵豆豆,林开利.多细胞构建血管化组织工程骨在骨修复中的应用[J].中国组织工程研究,2022,26(27):4386-4392. [2] 贾智明,郭海林,陈方.组织工程组织血管化的研究进展[J].组织工程与重建外科杂志,2018,14(1):39-42. [3] Yue K, Trujillo-de Santiago G, Alvarez MM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels [J]. Biomaterials, 2015, 73: 254-271. [4] Lee GM, Kim SJ, Kim EM, et al. Free radical-scavenging composite gelatin methacryloyl hydrogels for cell encapsulation [J]. Acta Biomater, 2022, 149: 96-110. [5] Huang B, Li P, Chen M, et al. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications [J]. J Nanobiotechnology, 2022, 20(1): 25. [6] Sakr MA, Sakthivel K, Hossain T, et al. Recent trends in gelatin methacryloyl nanocomposite hydrogels for tissue engineering [J]. J Biomed Mater Res A, 2022, 110(3): 708-724. [7] Zhang X, Huang P, Jiang G, et al. A novel magnesium ion-incorporating dual-crosslinked hydrogel to improve bone scaffold-mediated osteogenesis and angiogenesis [J]. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111868. [8] Li S, Sun J, Yang J, et al. Gelatin methacryloyl (GelMA) loaded with concentrated hypoxic pretreated adipose-derived mesenchymal stem cells(ADSCs) conditioned medium promotes wound healing and vascular regeneration in aged skin [J]. Biomater Res, 2023, 27(1): 11. [9] De Moor L, Smet J, Plovyt M, et al. Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin [J]. Biofabrication, 2021, 13(4). [10] Zhang J, Wehrle E, Rubert M, et al. 3D bioprinting of human tissues: Biofabrication, bioinks, and bioreactors [J]. Int J Mol Sci, 2021, 22(8):3971. [11] Matai I, Kaur G, Seyedsalehi A, et al. Progress in 3D bioprinting technology for tissue/organ regenerative engineering [J]. Biomaterials, 2020, 226: 119536. [12] Song HG, Rumma RT, Ozaki CK, et al. Vascular tissue engineering: Progress, challenges, and clinical promise [J]. Cell Stem Cell, 2018, 22(3): 340-354. [13] Ahangar P, Mills SJ, Smith LE, et al. Human gingival fibroblast secretome accelerates wound healing through anti-inflammatory and pro-angiogenic mechanisms [J]. NPJ Regen Med, 2020, 5(1): 24. [14] Odell AF, Mannion AJ. In vitro co-culture of fibroblast and endothelial cells to assess angiogenesis [J]. Methods Mol Biol, 2022, 2441: 277-286. [15] Smirani R, Rémy M, Devillard R, et al. Use of human gingival fibroblasts for pre-vascularization strategies in oral tissue engineering [J]. Tissue Eng Regen Med, 2022, 19(3): 525-535. [16] Galindo-Pumariño C, Herrera A, Muñoz A, et al. Fibroblast-derived 3D matrix system applicable to endothelial tube formation assay [J]. J Vis Exp, 2019, (154). [17] Tefft JB, Chen CS, Eyckmans J. Reconstituting the dynamics of endothelial cells and fibroblasts in wound closure [J]. APL Bioeng, 2021, 5(1): 016102. [18] Heller M, Frerick-Ochs EV, Bauer HK, et al. Tissue engineered pre-vascularized buccal mucosa equivalents utilizing a primary triculture of epithelial cells, endothelial cells and fibroblasts [J]. Biomaterials, 2016, 77: 207-215. [19] Um Min Allah N, Berahim Z, Ahmad A, et al. Biological Interaction Between Human Gingival Fibroblasts and Vascular Endothelial Cells for Angiogenesis: A Co-culture Perspective [J]. Tissue Eng Regen Med, 2017, 14(5): 495-505. [20] Shahabipour F, Tavafoghi M, Aninwene GE 2nd, et al. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models [J]. J Biomed Mater Res A, 2022, 110(5): 1077-1089. [21] Yeo M, Sarkar A, Singh YP, et al. Synergistic coupling between 3D bioprinting and vascularization strategies [J]. Biofabrication, 2023, 16(1):012003. [22] Wang W, Zhu Y, Li J, et al. Bioprinting ephrinB2-modified dental pulp stem cells with enhanced osteogenic capacity for alveolar bone engineering [J]. Tissue Eng Part A, 2023, 29(7-8): 244-255. [23] 唐珺,谈金女,叶朝阳,等.三维预血管化微组织中成纤维细胞促进内皮细胞出芽及迁移的研究[J].中国修复重建外科杂志,2022,36(7): 881-888. [24] Piard C, Jeyaram A, Liu Y, et al. 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance [J]. Biomaterials, 2019, 222: 119423. [25] Zhang Y, Liu J, Zou T, et al. DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling [J]. Stem Cell Res Ther, 2021, 12(1):281. |