[1] 严霞,张亚楠,孟增东.构建骨缺损植入材料非人灵长类动物模型的研究与进展[J].中国组织工程研究,2018,22(31):5021-5026. [2] Li Y, Chen SK, Li L, et al. Bone defect animal models for testing efficacy of bone substitute biomaterials [J]. J Orthop Translat,2015,3(3):95-104. [3] Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering [J]. Connect Tissue Res,2015,56(3):175-194. [4] Liu X, Chen W, Zhang C, et al. Co-seeding human endothelial cells with human-induced pluripotent stem cell-derived mesenchymal stem cells on calcium phosphate scaffold enhances osteogenesis and vascularization in rats [J]. Tissue Eng Part A, 2017, 23(11-12):546-555. [5] Dadsetan M, Guda T, Runge MB, et al. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds [J]. Acta Biomater,2015,18:9-20. [6] Hollinger JO, Kleinschmidt JC. The critical size defect as an experimental model to test bone repair materials [J]. J Craniofac Surg,1990,1(1):60-68. [7] Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies [J]. Lab Anim,2011,45(1):14-24. [8] Bonnarens F, Einhorn TA. Production of a standard closed fracture in laboratory animal bone [J]. J Orthop Res,1984,2(1):97-101. [9] Reichert JC, Epari DR, Wullschleger ME, et al. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies [J]. Tissue Eng Part B Rev, 2010, 16(1):93-104. [10] Ji W, Bolander J, Chai YC, et al. Toward Advanced Therapy Medicinal Products (ATMPs) Combining Bone Morphogenetic Proteins (BMP) and Cells for Bone Regeneration. In: Bone Morphogenetic Proteins: Systems Biology Regulators [M]. Springer Nature. 2017.127-169. [11] Lindsey RW, Gugala Z, Milne E, et al. The efficacy of cylindrical titanium mesh cage for the reconstruction of a critical-size canine segmental femoral diaphyseal defect [J]. J Orthop Res,2006,24(7):1438-1453. [12] McGovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease [J]. Dis Model Mech, 2018, 11(4):dmm033084. [13] Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner [J]. Biomaterials, 2020, 239:119833. [14] Ji W, Wang H, van den Beucken JJ, et al. Local delivery of small and large biomolecules in craniomaxillofacial bone [J]. Adv Drug Deliv Rev, 2012, 64(12):1152-1164. [15] Boda SK, Almoshari Y, Wang H, et al. Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration [J]. Acta Biomater, 2019, 85:282-293. [16] Sun Z, Kennedy KS, Tee BC, et al. Establishing a critical-size mandibular defect model in growing pigs: characterization of spontaneous healing [J]. J Oral Maxillofac Surg, 2014, 72(9):1852-1868. [17] Tran N, Tran PA, Jarrell JD, et al. In vivo caprine model for osteomyelitis and evaluation of biofilm-resistant intramedullary nails [J]. Biomed Res Int, 2013, 2013:674378. [18] Yan L, Jiang DM, Cao ZD, et al. Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres [J]. Drug Des Devel Ther, 2015, 9:3665-3676. [19] Inzana JA, Schwarz EM, Kates SL, et al. A novel murine model of established Staphylococcal bone infection in the presence of a fracture fixation plate to study therapies utilizing antibiotic-laden spacers after revision surgery [J]. Bone, 2015, 72: 128-136. [20] Seebach E, Holschbach J, Buchta N, et al. Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates Staphylococcus aureus induced osteomyelitis [J]. Acta Biomater,2015,21:165-177. [21] Brown ME, Zou Y, Peyyala R, et al. Testing of a bioactive, moldable bone graft substitute in an infected, critically sized segmental defect model [J]. J Biomed Mater Res B Appl Biomater, 2018, 106(5):1878-1886. [22] Liu Z, Yuan X, Liu M, et al. Antimicrobial peptide combined with BMP2-modified mesenchymal stem cells promotes calvarial repair in an osteolytic model [J]. Mol Ther, 2018, 26(1):199-207. [23] Hwang SJ, Cho TH, Lee B, et al. Bone-healing capacity of conditioned medium derived from three-dimensionally cultivated human mesenchymal stem cells and electrical stimulation on collagen sponge [J]. J Biomed Mater Res A, 2018, 106(2):311-320. [24] 柯晓菁,雷浪,闫福华.LP-17多肽对牙龈卟啉单胞菌脂多糖致牙周炎进展的作用[J].口腔医学研究,2018,34(3): 323-326. [25] Chen Q, Cai J, Li X, et al. Progranulin promotes regeneration of inflammatory periodontal bone defect in rats via anti-inflammation, osteoclastogenic inhibition, and osteogenic promotion [J]. Inflammation, 2019, 42(1):221-234. [26] Rao NJ, Wang JY, Yu RQ, et al. Role of periapical diseases in medication-related osteonecrosis of the jaws [J]. Biomed Res Int, 2017, 2017:1560175. [27] Dong M, Jin H, Zuo M, et al. The potential effect of Bruton's tyrosine kinase in refractory periapical periodontitis [J]. Biomed Pharmacother, 2019, 112:108710. [28] Kohart NA, Elshafae SM, Supsahvad W, et al. Mouse model recapitulates the phenotypic heterogeneity of human adult T-cell leukemia/lymphoma in bone [J]. J Bone Oncol, 2019, 19:100257. [29] Quan J, Hou Y, Long W, et al. Characterization of different osteoclast phenotypes in the progression of bone invasion by oral squamous cell carcinoma [J]. Oncol Rep, 2018, 39(3):1043-1051. [30] Zhang Y, Zou B, Tan Y, et al. Sinomenine inhibits osteolysis in breast cancer by reducing IL-8/CXCR1 and c-Fos/NFATc1 signaling [J]. Pharmacol Res, 2019, 142:140-150. [31] Zhang K, Zhou Y, Xiao C, et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect [J]. Sci Adv, 2019, 5(8): eaax6946. [32] Morisawa A, Okui T, Shimo T, et al. Ammonium tetrathiomolybdate enhances the antitumor effects of cetuximab via the suppression of osteoclastogenesis in head and neck squamous carcinoma [J]. Int J Oncol, 2018, 52(3):989-999. [33] Martin CK, Dirksen WP, Carlton MM, et al. Combined zoledronic acid and meloxicam reduced bone loss and tumour growth in an orthotopic mouse model of bone-invasive oral squamous cell carcinoma [J]. Vet Comp Oncol, 2015, 13(3):203-217. |