[1] 金晔丽,潘海华,唐睿康.仿生矿化与硬组织修复[J].无机化学学报,2020,36(6): 1049-1062. [2] Goldberg M, Kulkarni AB, Young M, et al. Dentin: structure, composition and mineralization [J]. Front Biosci (Elite Ed), 2011, 3: 711-735. [3] Giacaman RA, Perez VA, Carrera CA. 5-Mineralization processes in hard tissues: Teeth. Aparicio C, Ginebra MP. editor. Biomineralization and Biomaterials[M]. Boston: Woodhead Publishing, 2016: 147-185. [4] 徐高祥,张琦,张鲁鲁,等.成牙本质细胞表达相关蛋白作用的研究进展[J].口腔医学研究,2016,32(8): 886-889. [5] Du TM, Niu XF, Li ZW, et al. Crosslinking induces high mineralization of apatite minerals on collagen fibers [J]. Int J Biol Macromol, 2018, 113: 450-457. [6] Retana-Lobo C, Guerreiro-Tanomaru JM, Tanomaru-Filho M, et al. Non-collagenous dentin protein binding sites control mineral formation during the biomineralisation process in radicular dentin [J]. Materials, 2020, 13(5): 18. [7] Liu Y, Luo D, Kou XX, et al. Hierarchical intrafibrillar nanocarbonated apatite assembly improves the nanomechanics and cytocompatibility of mineralized collagen [J]. Adv Funct Mater, 2013, 23(11): 1404-1411. [8] Jin WJ, Jiang SQ, Pan HH, et al. Amorphous phase mediated crystallization: fundamentals of biomineralization [J]. Crystals, 2018, 8(1): 24. [9] Gower LB, Odom DJ. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process [J]. J Cryst Growth, 2000, 210(4): 719-734. [10] Gower LB. 6-Biomimetic mineralization of collagen. Aparicio C, Ginebra M-P. editor. Biomineralization and Biomaterials[M]. Boston: Woodhead Publishing, 2016: 187-232. [11] He L, Hao Y, Zhen L, et al. Biomineralization of dentin [J]. J Struct Biol, 2019, 207(2): 115-122. [12] Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization [J]. Chem Rev, 2008, 108(11): 4551-4627. [13] Nudelman F, Pieterse K, George A, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors [J]. Nat Mater, 2010, 9(12): 1004-1009. [14] Li JH, Yang JJ, Li JY, et al. Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer [J]. Biomaterials, 2013, 34(28): 6738-6747. [15] Liang K, Xiao S, Wu J, et al. Long-term dentin remineralization by poly(amido amine) and rechargeable calcium phosphate nanocomposite after fluid challenges [J]. Dent Mater, 2018, 34(4): 607-618. [16] Gu LS, Kim YK, Liu Y, et al. Immobilization of a phosphonated analog of matrix phosphoproteins within cross-linked collagen as a templating mechanism for biomimetic mineralization [J]. Acta Biomater, 2011, 7(1): 268-277. [17] Silver FH, Landis WJ. Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type Ⅰ collagen [J]. Connect Tissue Res, 2011, 52(3): 242-254. [18] Takahashi M, Nakajima M, Tagami J, et al. The importance of size-exclusion characteristics of type Ⅰ collagen in bonding to dentin matrices [J]. Acta Biomater, 2013, 9(12): 9522-9528. [19] Price PA, Toroian D, Lim JE. Mineralization by inhibitor exclusion: the calcification of collagen with fetuin [J]. J Biol Chem, 2009, 284(25): 17092-17101. [20] Niu LN, Jee SE, Jiao K, et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality [J]. Nat Mater, 2017, 16(3): 370-378. [21] Nudelman F, Bomans PHH, George A, et al. The role of the amorphous phase on the biomimetic mineralization of collagen [J]. Faraday Discuss, 2012, 159: 357-370. [22] Wang Y, Azais T, Robin M, et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite [J]. Nat Mater, 2012, 11(8): 724-733. [23] Burwell AK, Thula-Mata T, Gower LB, et al. Functional remineralization of dentin lesions using polymer-induced liquid-precursor process [J]. PLoS One, 2012, 7(6): 10. [24] He HH, Shao CY, Mu Z, et al. Promotion effect of immobilized chondroitin sulfate on intrafibrillar mineralization of collagen [J]. Carbohydr Polym, 2020, 229: 8. [25] Qu YN, Gu TY, Du QL, et al. Polydopamine promotes dentin remineralization via interfacial control [J]. ACS Biomater Sci Eng, 2020, 6(6): 3327-3334. [26] Shao CY, Zhao RB, Jiang SQ, et al. Citrate improves collagen mineralization via interface wetting: A physicochemical understanding of biomineralization control [J]. Adv Mater, 2018, 30(8): 7. [27] 钱鑫,张志民.化学交联剂对树脂牙本质粘接稳定性的影响[J].口腔医学研究,2020,36(3): 203-205. [28] Chen CQ, Mao CY, Sun J, et al. Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen [J]. Mater Sci Eng C-Mater Biol Appl, 2016, 67: 657-665. [29] Wang RX, Guo JX, Lin XX, et al. Influence of molecular weight and concentration of carboxymethyl chitosan on biomimetic mineralization of collagen [J]. RSC Adv, 2020, 10(22): 12970-12981. [30] Chen Z, Cao SS, Wang HR, et al. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries [J]. PLoS One, 2015, 10(1): 19. [31] Huang ZH, Qi YP, Zhang K, et al. Use of experimental-resin-based materials doped with carboxymethyl chitosan and calcium phosphate microfillers to induce biomimetic remineralization of caries-affected dentin [J]. J Mech Behav Biomed Mater, 2019, 89: 81-88. [32] Wu ZF, Wang XK, Wang Z, et al. Self-Etch adhesive as a carrier for ACP nanoprecursors to deliver biomimetic remineralization [J]. ACS Appl Mater Interfaces, 2017, 9(21): 17710-17717. [33] Zhang W, Luo XJ, Niu LN, et al. Biomimetic intrafibrillar mineralization of type Ⅰ collagen with intermediate precursors-loaded mesoporous carriers [J]. Sci Rep, 2015, 5: 11. [34] Luo XJ, Yang HY, Niu LN, et al. Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica [J]. Acta Biomater, 2016, 31: 378-387. [35] Niu LN, Zhang W, Pashley DH, et al. Biomimetic remineralization of dentin [J]. Dent Mater, 2014, 30(1): 77-96. |