[1] 冯大军,许鹏,孙云峰.动态导航系统在种植体精准植入术中的临床应用[J].口腔医学研究,2021,37(7):617-621. [2] Mohanty R, Sudan PS, Dharamsi AM, et al. Risk assessment in long-term survival rates of dental implants: A prospective clinical study [J]. J Contemp Dent Pract, 2018,19(5):587-590. [3] 刘峰,周文娟,柳忠豪.计算机辅助规划与设计软件在口腔种植外科中的应用 [J].临床口腔医学杂志,2021,37(2):124-126. [4] Greenberg AM. Digital technologies for dental implant treatment planning and guided surgery [J]. Oral Maxillofac Surg Clin North Am, 2015, 27(2):319-340. [5] 刘梦佳,周文娟,柳忠豪.计算机辅助引导种植手术的应用进展 [J].中国口腔种植学杂志,2020,25(1):35-40. [6] D'Haese J, Ackhurst J, Wismeijer D, et al. Current state of the art of computer-guided implant surgery [J]. Periodontol 2000, 2017,73(1):121-133. [7] 柳忠豪.计算机辅助规划设计助力精准种植与长期稳定 [J].口腔医学研究,2021,37(9):775-779. [8] Jacobs R, Salmon B, Codari M, et al. Cone beam computed tomography in implant dentistry: recommendations for clinical use [J]. BMC Oral Health, 2018, 18(1):88. [9] Pauwels R, Araki K, Siewerdsen JH, et al. Technical aspects of dental CBCT: state of the art [J]. Dentomaxillofac Radiol, 2015, 44(1):20140224. [10] Gaeta-Araujo H, Oliveira-Santos N, Mancini A, et al. Retrospective assessment of dental implant-related perforations of relevant anatomical structures and inadequate spacing between implants/teeth using cone-beam computed tomography [J]. Clin Oral Investig, 2020, 24(9):3281-3288. [11] 柳忠豪,申晓靖,周文娟.数字化种植的研究进展及发展趋势 [J]. 口腔医学研究,2019,35(8):725-729. [12] Valizadeh S, Baharestani M, Amid R, et al. Evaluation of maxillary alveolar ridge morphology and residual bone for implant placement by cone beam computed tomography (CBCT) [J]. J Long Term Eff Med Implants, 2022, 32(2):61-71. [13] 卢曦,苏怡.锥形束CT与曲面断层片在后牙区可用骨高度测量与种植模拟中的临床评价[J].中国组织工程研究,2017,21(20):3152-3157. [14] Zhang W, Skrypczak A, Weltman R. Anterior maxilla alveolar ridge dimension and morphology measurement by cone beam computerized tomography (CBCT) for immediate implant treatment planning [J]. BMC Oral Health, 2015, 15(1):65. [15] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation [J]. ArXiv, 2015,abs/1505.04597. [16] Kurt BS, Orhan K, Bayrakdar IS, et al. A deep learning approach for dental implant planning in cone-beam computed tomography images [J]. BMC Med Imaging, 2021, 21(1):86. [17] Mori I, Machida Y, Osanai M, et al. Photon starvation artifacts of X-ray CT: their true cause and a solution [J]. Radiol Phys Technol, 2013, 6(1):130-141. [18] Jang TJ, Kim KC, Cho HC, et al. A fully automated method for 3D individual tooth identification and segmentation in dental CBCT [J]. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10):6562-6568. [19] Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J]. Nat Methods, 2021, 18(2):203-211. [20] Li Y, Deng S, Mei L, et al. Accuracy of alveolar bone height and thickness measurements in cone beam computed tomography: a systematic review and meta-analysis [J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2019, 128(6):667-679. [21] Arponen H, Elf H, Evalahti M, et al. Reliability of cranial base measurements on lateral skull radiographs [J]. Orthod Craniofac Res, 2008, 11(4):201-210. [22] Ismail A, Lakschevitz F, MacDonald D, et al. Measurement accuracy in cone beam computed tomography in the presence of metal artifact [J]. Int J Oral Maxillofac Implants, 2022, 37(1):143-152. |