
Journal of Oral Science Research ›› 2025, Vol. 41 ›› Issue (7): 547-551.DOI: 10.13701/j.cnki.kqyxyj.2025.07.001
XIONG Manwen, LIU Min*
Received:2024-09-23
Online:2025-07-28
Published:2025-07-24
XIONG Manwen, LIU Min. Research Progress on Pathogenic Mechanism of Gingipain in Cardiovascular Diseases[J]. Journal of Oral Science Research, 2025, 41(7): 547-551.
| [1] Vaduganathan M, Mensah GA, Turco JV, et al. The global burden of cardiovascular diseases and risk: A compass for future health [J]. J Am Coll Cardiol, 2022, 80(25):2361-2371. [2] Crea F. Challenges in the prevention of cardiovascular diseases: traditional and non-traditional risk factors [J]. Eur Heart J, 2021, 42(21):2025-2029. [3] Altamura S, Del Pinto R, Pietropaoli D, et al. Oral health as a modifiable risk factor for cardiovascular diseases [J]. Trends Cardiovasc Med, 2024, 34(4):267-275. [4] Qiu Q, Zhang F, Wu J, et al. Gingipains disrupt F-actin and cause osteoblast apoptosis via integrin β1 [J]. J Periodontal Res, 2018, 53(5):762-776. [5] Aleksijević LH, Aleksijević M, krlec I, et al. Porphyromonas gingivalis virulence factors and clinical significance in periodontal disease and coronary artery diseases [J]. Pathogens, 2022, 11(10):1173. [6] Chow YC, Yam HC, Gunasekaran B, et al. Implications of Porphyromonas gingivalis peptidyl arginine deiminase and gingipain R in human health and diseases [J]. Front Cell Infect Microbiol, 2022, 12:987683. [7] Nowakowska Z, Madej M, Grad S, et al. Phosphorylation of major Porphyromonas gingivalis virulence factors is crucial for their processing and secretion [J]. Mol Oral Microbiol, 2021, 36(6):316-326. [8] 汪丹,孟维艳.牙龈卟啉单胞菌牙龈蛋白酶的研究进展[J].口腔医学研究,2022,38(3):216-219. [9] Nonaka S, Kadowaki T, Nakanishi H. Secreted gingipains from Porphyromonas gingivalis increase permeability in human cerebral microvascular endothelial cells through intracellular degradation of tight junction proteins [J]. Neurochem Int, 2022, 154:105282. [10] Elashiry M, Carroll A, Yuan J, et al. Oral microbially-induced small extracellular vesicles cross the blood-brain barrier [J]. Int J Mol Sci, 2024, 25(8):4509. [11] Lei S, Li J, Yu J, et al. Porphyromonas gingivalis bacteremia increases the permeability of the blood-brain barrier via the Mfsd2a/Caveolin-1 mediated transcytosis pathway [J]. Int J Oral Sci, 2023, 15(1):3. [12] Li F, Ma C, Lei S, et al. Gingipains may be one of the key virulence factors of Porphyromonas gingivalis to impair cognition and enhance blood-brain barrier permeability: An animal study [J]. J Clin Periodontol, 2024, 51(7):818-839. [13] Farrugia C, Stafford GP, Potempa J, et al. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis [J]. FEBS J, 2021, 288(5):1479-1495. [14] Sasaki N, Takeuchi H, Kitano S, et al. Dynamic analysis of Porphyromonas gingivalis invasion into blood capillaries during the infection process in host tissues using a vascularized three-dimensional human gingival model [J]. Biomater Sci, 2021, 9(19):6574-6583. [15] Zou Z, Fang J, Ma W, et al. Porphyromonas gingivalis gingipains destroy the vascular barrier and reduce CD99 and CD99L2 expression to regulate transendothelial migration [J]. Microbiol Spectr, 2023, 11(3):e0476922. [16] Nunes JM, Fillis T, PAge MJ, et al. Gingipain R1 and lipopolysaccharide from Porphyromonas gingivalis have major effects on blood clot morphology and mechanics [J]. Front Immunol, 2020, 11:1551. [17] Freiherr Von Seckendorff A, Nomenjanahary MS, Labreuche J, et al. Periodontitis in ischemic stroke:impact of Porphyromonas gingivalis on thrombus composition and ischemic stroke outcomes [J]. Res Pract Thromb Haemost, 2024, 8(1):102313. [18] Shiheido-Watanabe Y, Maejima Y, Nakagama S, et al. Porphyromonas gingivalis,a periodontal pathogen, impairs post-infarcted myocardium by inhibiting autophagosome-lysosome fusion [J]. Int J Oral Sci, 2023, 15(1):42. [19] Wadhawan A, Reynolds MA, Makkar H, et al. Periodontal pathogens and neuropsychiatric health [J]. Curr Top Med Chem, 2020, 20(15):1353-1397. [20] Cichońska D, Mazuś M, Kusiak A. Recent aspects of periodontitis and Alzheimer's disease-A narrative review [J]. Int J Mol Sci, 2024, 25(5):2612. [21] Køllgaard T, Enevold C, Bendtzen K, et al. Cholesterol crystals enhance TLR2- and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis [J]. PLoS One, 2017, 12(2):e0172773. [22] Yamaguchi Y, Kurita-Ochiai T, Kobayashi R, et al. Activation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated atherosclerosis [J]. Pathog Dis, 2015, 73(4):ftv011. [23] Lunar Silva I, Cascales E. Molecular strategies underlying Porphyromonas gingivalis virulence [J]. J Mol Biol, 2021, 433(7):166836. [24] Martins CC, Lockhart PB, Firmino RT, et al. Bacteremia following different oral procedures: Systematic review and meta-analysis [J]. Oral Dis, 2024, 30(3):846-854. [25] Wang J, Zhou Y, Ren B, et al. The role of neutrophil extracellular traps in periodontitis [J]. Front Cell Infect Microbiol, 2021, 11:639144. [26] Geng X, Wang DW, Li H. The pivotal role of neutrophil extracellular traps in cardiovascular diseases:Mechanisms and therapeutic implications [J]. Biomed Pharmacother, 2024, 179:117289. [27] Bryzek D, Ciaston I, Dobosz E, et al. Triggering NETosis via protease-activated receptor (PAR)-2 signaling as a mechanism of hijacking neutrophils function for pathogen benefits [J]. PLoS Pathog, 2019, 15(5):e1007773. [28] Qu H, Zhang S. Association of cardiovascular health and periodontitis: a population-based study [J]. BMC Public Health, 2024, 24(1):438. [29] Bassani B, Cucchiara M, Butera A, et al. Neutrophils' contribution to periodontitis and periodontitis-associated cardiovascular diseases [J]. Int J Mol Sci, 2023, 24(20):15370. [30] Sanz M, Marco Del Castillo A, Jepsen S, et al. Periodontitis and cardiovascular diseases:Consensus report [J]. J Clin Periodontol, 2020, 47(3):268-288. [31] Men B, Li Y, Jiang S. Updates on the role of periodontitis-related epigenetics, inflammation, oral microbiome, and treatment in cardiovascular risk [J]. J Inflamm Res, 2024, 17:837-851. [32] 孟焕新.牙周病学[M].第5版.北京:人民卫生出版,2020, 183-183. |
| [1] | DU Lan, CHEN Liang. Research Progress of Oral Local Drug Delivery System in Treatment of Periodontitis:A Literature Review [J]. Journal of Oral Science Research, 2025, 41(6): 457-462. |
| [2] | LI Jiaqi, CHENG Shi, ZHOU Lu, WEN Yuanhao, MAO Hanqing, ZHANG Lu. Hexokinase HK2 Activates STING Pathway to Exacerbate Bone Resorption in Apical Periodontitis [J]. Journal of Oral Science Research, 2025, 41(6): 469-476. |
| [3] | ZHANG Caixia, ZHOU Yiwen, WEN Juan, HUANG Ziwei, LIN Shuang, YANG Ren, LI Huang, LI Guifeng. Regulation of Folliculin Interacting Protein 1 on Periodontitis [J]. Journal of Oral Science Research, 2025, 41(6): 521-528. |
| [4] | WEI Xiaoxuan, LI Bolei. Research Progress on Roles of Osteoclasts in Chronic Apical Periodontitis [J]. Journal of Oral Science Research, 2025, 41(5): 363-368. |
| [5] | WEI Wei, TAN Xiaorong, LI Muqiu, GONG Zhongcheng, LI Chenxi. Effect of Porphyromonas Gingivalis on Migration and Invasion of Oral Squamous Cell Carcinoma through NDK/ATP/P2X7 Pathway [J]. Journal of Oral Science Research, 2025, 41(5): 378-385. |
| [6] | WU Jing, NA Xin, PENG Simin, CAO Zhengguo, WANG Xiaoxuan. A Case Report of Initial Periodontal Therapy for Generalized Severe Periodontitis (Stage Ⅱ Grade B) [J]. Journal of Oral Science Research, 2025, 41(3): 260-264. |
| [7] | YU Chengbo, ZHANG Zhixiang, YU Yilin, CAO Yingguang, SONG Ke. In Vitro Study on Effect of Inhibiting IRE1α Pathway on Osteoclast Proliferation and Differentiation [J]. Journal of Oral Science Research, 2025, 41(2): 122-127. |
| [8] | HE Lijuan, PAN Taohua, WU Hao, LUO Xiaoliang. GTR for Extensive Stage Ⅲ Class C Periodontitis with Third Degree Furcation Involvement:A Case Report [J]. Journal of Oral Science Research, 2025, 41(2): 164-166. |
| [9] | SUN Yuhong, GUO Yun, FAN Mingzhe, ZENG Yu, GAO Ya, SUN Hualing, CAO Zhengguo. Periodontal-implant Restorative Multidisciplinary Treatment for Severe Periodontitis:8-year Follow Up [J]. Journal of Oral Science Research, 2025, 41(2): 170-174. |
| [10] | XIANG Jing, CHEN Qihang, QIANG Xiaoye, WANG Shuxin, ZHANG Dejun. Prediction of Potential Targets and Molecular Mechanisms of Compound Honeysuckle in Prevention and Treatment of Periodontitis Based on Network Pharmacology and Molecular Docking Technology [J]. Journal of Oral Science Research, 2025, 41(1): 26-34. |
| [11] | CEN Ting, ZHANG Maoqi, ZENG Yu, GAO Ya, XIANG Junbo, CAO Zhengguo. A Case Report of Combined Periodontal, Orthodontic, and Restorative Treatment for A Patient with Severe Periodontitis, Followed Up for 5 Years--Based on Clinical Practice for Grade Ⅳ, Stage Ⅲ Severe Periodontitis [J]. Journal of Oral Science Research, 2025, 41(1): 75-80. |
| [12] | XI Xufeng, WANG He, LIN Yao. Regenerative Endodontic Treatment of A Young Permanent Tooth after Unsuccessful Root Canal Therapy: A Case Report [J]. Journal of Oral Science Research, 2024, 40(9): 834-836. |
| [13] | WEI Yan, TIAN Ai. Research Progress on Regulation of Macrophages Involvement in Periodontal Disease by Lactate/Lactation Modification [J]. Journal of Oral Science Research, 2024, 40(7): 578-582. |
| [14] | TU Yuan, DING Yi. Research Progress of Emerging Strategy for Gingival Papillary Reconstruction [J]. Journal of Oral Science Research, 2024, 40(6): 473-478. |
| [15] | WEN Shang, GUO Jincai, ZHANG Minyi, YU Yulin, MA Fei, XIE Hui. 5-year Observation of Severe Periodontitis with Multidisciplinary Periodontal and Implant Treatment: A Case Report [J]. Journal of Oral Science Research, 2024, 40(6): 555-558. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||