[1] Saleem K, Zaib T, Sun W, et al. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate [J]. Heliyon, 2019, 5(12):e03019. [2] Wang M, Yuan Y, Wang Z, et al. Prevalence of orofacial clefts among live births in China:A systematic review and meta-analysis [J]. Birth Defects Res, 2017, 109(13):1011-1019. [3] Zhou R, Wang M, Li W, et al. Haplotype and haplotype-environment interaction analysis revealed roles of SPRY2 for NSCL/P among Chinese populations [J]. Int J Environ Res Public Health, 2019, 16(4):557. [4] Jiang S, Shi JY, Lin YS, et al. NTN1 gene was risk to non-syndromic cleft lip only among Han Chinese population [J]. Oral Dis, 2019, 25(2):535-542. [5] Liang X, Huang L, Ou Y, et al. Association between MAFB rs17820943 and rs6072081 polymorphism and risk of nonsyndromic cleft lip with or without cleft palate:a meta-analysis [J]. Br J Oral Maxillofac Surg, 2020, 58(9):1065-1072. [6] Imani MM, Sadeghi M, Tadakamadla SK, et al. Polymorphisms of ATP-binding cassette,sub-family A,member 4(rs560426 and rs481931)and non-syndromic cleft lip/palate:A meta-analysis [J]. Life(Basel), 2021, 11(1):58. [7] Wang Y, Ma C, Jiang C, et al. A novel IRF6 variant detected in a family with nonsyndromic cleft lip and palate by whole exome sequencing [J]. J Craniofac Surg, 2021, 32(1):265-269. [8] 李冬梅,刘廷廷,孟祥彪,等.THADA基因多态性与非综合征性唇腭裂的相关性研究[J].口腔医学研究,2017,33(2):187-190. [9] 侯宇转,阮文彦,段小红,等.ARHGAP29内含子区域SNP位点的生物信息学分析[J].口腔生物医学,2020,11(3):147-150. [10] Liu H, Leslie EJ, Carlson JC, et al. Identification of common non-coding variants at 1p22 that are functional for non-syndromic orofacial clefting [J]. Nat Commun, 2017, 8:14759. [11] Leslie EJ, Mansilla MA, Biggs LC, et al. Expression and mutation analyses implicate ARHGAP29 as the etiologic gene for the cleft lip with or without cleft palate locus identified by genome-wide association on chromosome 1p22 [J]. Birth Defects Res A Clin Mol Teratol, 2012, 94(11):934-942. [12] Liu H, Busch T, Eliason S, et al. Exome sequencing provides additional evidence for the involvement of ARHGAP29 in Mendelian orofacial clefting and extends the phenotypic spectrum to isolated cleft palate [J]. Birth Defects Res, 2017, 109(1):27-37. [13] Savastano CP, Brito LA, FariaÁC, et al. Impact of rare variants in ARHGAP29 to the etiology of oral clefts:role of loss-of-function vs missense variants [J]. Clin Genet, 2017, 91(5):683-689. [14] Tarr JT, Lambi AG, Bradley JP, et al. Development of normal and cleft palate:A central role for connective tissue growth factor(CTGF)/CCN2 [J]. J Dev Biol, 2018, 6(3):18. [15] Hu X, Li Y, Liang M, et al. Induced cleft palat by Retinoic acid through altering the cell proliferation and apoptosis at the key stages of palatal development [J]. Zhonghua Zheng Xing Wai Ke Za Zhi, 2016, 32(3):220-224. [16] Kolb K, Hellinger J, Kansy M, et al. Influence of ARHGAP29 on the invasion of mesenchymal-transformed breast cancer cells [J]. Cells,2020,9(12):2616. [17] Paul BJ, Palmer K, Sharp JC, et al. ARHGAP29 mutation is associated with abnormal oral epithelial adhesions [J]. J Dent Res, 2017, 96(11):1298-1305. [18] Biggs LC, Naridze RL, DeMali KA, et al. Interferon regulatory factor 6 regulates keratinocyte migration [J]. J Cell Sci, 2014, 127(Pt 13):2840-2848. [19] 赵远锋,文杰,周天鸿,等.唇腭裂相关基因IRF6基因沉默促进细胞增殖和迁移并抑制上皮间质转化[J].中国生物化学与分子生物学报,2019,35(3):296-303. [20] Kousa YA, Roushangar R, Patel N, et al. IRF6 and SPRY4 signaling interact in periderm development [J]. J Dent Res, 2017, 96(11):1306-1313. |