[1] Mello FW, Miguel AFP, Dutra KL, et al. Prevalence of oral potentially malignant disorders: A systematic review and meta-analysis [J]. J Oral Pathol Med, 2018, 47(7):633-640. [2] Pinto AC, Caramês J, Francisco H, et al. Malignant transformation rate of oral leukoplakia-systematic review [J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2020, 129(6):600-611. [3] 杨凯成,杨蕾,赵建广,等. 口腔鳞状细胞癌患者外周血microRNA的表达及预后意义[J]. 口腔医学研究,2020, 36(5):428-432. [4] Ghafouri-Fard S, Shoorei H, Anamag FT, et al. The role of non-coding RNAs in controlling cell cycle related proteins in cancer cells [J]. Front Oncol, 2020, 10:608975. [5] Niu T, Zhang W, Xiao W. MicroRNA regulation of cancer stem cells in the pathogenesis of breast cancer [J]. Cancer Cell Int, 2021, 21(1):31. [6] Torsin LI, Petrescu GED, Sabo AA, et al. Editing and chemical modifications on non-coding RNAs in cancer: A new tale with clinical significance [J]. Int J Mol Sci, 2021, 22(2):581. [7] Volovat SR, Volovat C, Hordila I, et al. MiRNA and lncRNA as potential biomarkers in triple-negative breast cancer: A review [J]. Front Oncol, 2020, 10:526850. [8] Iqbal MA, Arora S, Prakasam G, et al. MicroRNA in lung cancer: role, mechanisms, pathways and therapeutic relevance [J]. Mol Aspects Med, 2019, 70:3-20. [9] Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs [J]. Cell, 2009, 136(4):642-655. [10] Ruby JG, Jan CH, Bartel DP. Intronic microRNA precursors that bypass Drosha processing [J]. Nature, 2007, 448(7149):83-86. [11] Chen D, Cabay RJ, Jin Y, et al. MicroRNA deregulations in head and neck squamous cell carcinomas [J]. J Oral Maxillofac Res, 2013, 4(1):e2. [12] Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods [J]. J Cell Physiol, 2019, 234(5):5451-5465. [13] Bayraktar R, Van Roosbroeck K, Calin GA. Cell-to-cell communication: microRNAs as hormones [J]. Mol Oncol, 2017, 11(12):1673-1686. [14] Ouyang T, Liu Z, Han Z, et al. MicroRNA detection specificity: Recent advances and future perspective [J]. Anal Chem, 2019, 91(5):3179-3186. [15] Cheng Y, Dong L, Zhang J, et al. Recent advances in microRNA detection [J]. Analyst, 2018, 143(8):1758-1774. [16] Tian T, Wang J, Zhou X. A review: microRNA detection methods [J]. Org Biomol Chem, 2015, 13(8):2226-2238. [17] Villa A, Sonis S. Oral leukoplakia remains a challenging condition [J]. Oral Dis, 2018, 24(1-2):179-183. [18] Monteiro L, Mello FW, Warnakulasuriya S. Tissue biomarkers for predicting the risk of oral cancer in patients diagnosed with oral leukoplakia: A systematic review[J]. Oral Dis, 2021, 27(8):1977-1992. [19] Liu CJ, Tsai MM, Hung PS, et al. miR-31 ablates expression of the HIF regulatory factor FIH to activate the HIF pathway in head and neck carcinoma[J]. Cancer Res, 2010, 70(4):1635-1644. [20] Liu CJ, Lin SC, Yang CC, et al. Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma [J]. Head Neck, 2012, 34(2): 219-224. [21] Liu C, Kao S, Tu H, et al. Increase of microRNA miR-31 level in plasma could be a potential marker of oral cancer [J]. Oral Dis, 2010, 16(4):360-364. [22] Chang KW, Kao SY, Wu YH, et al. Passenger strand miRNA miR-31* regulates the phenotypes of oral cancer cells by targeting RhoA [J]. Oral Oncol, 2013, 49(1):27-33. [23] Xiao W, Bao ZX, Zhang CY, et al. Upregulation of miR-31* is negatively associated with recurrent/newly formed oral leukoplakia [J]. PLoS One, 2012, 7(6):e38648. [24] Maimaiti A, Abudoukeremu K, Tie L, et al. MicroRNA expression profiling and functional annotation analysis of their targets associated with the malignant transformation of oral leukoplakia [J]. Gene, 2015, 558(2):271-277. [25] Roy R, Singh R, Chattopadhyay E, et al. MicroRNA and target gene expression based clustering of oral cancer, precancer and normal tissues [J]. Gene, 2016,593(1):58-63. [26] Chen H, Liu X, Jin Z, et al. A three miRNAs signature for predicting the transformation of oral leukoplakia to oral squamous cell carcinoma [J]. Am J Cancer Res, 2018, 8(8):1403-1413. [27] Philipone E, Yoon AJ, Wang S, et al. MicroRNAs-208b-3p, 204-5p, 129-2-3p and 3065-5p as predictive markers of oral leukoplakia that progress to cancer [J]. Am J Cancer Res, 2016, 6(7):1537-1546. [28] Cervigne NK, Reis PP, Machado J, et al. Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma [J]. Hum Mol Genet, 2009, 18(24):4818-4829. [29] Brito JAR, Gomes CC, Guimares ALS, et al. Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia [J]. J Oral Pathol Med, 2014, 43(3):211-216. [30] Ranganathan K, Kavitha L. Oral epithelial dysplasia: Classifications and clinical relevance in risk assessment of oral potentially malignant disorders [J]. J Oral Maxillofac Pathol, 2019, 23(1):19-27. [31] Holmstrup P, Vedtofte P, Reibel J, et al. Oral premalignant lesions: is a biopsy reliable? [J]. J Oral Pathol Med, 2007, 36(5):262-266. [32] Li W, Han Y, Zhao Z, et al. Oral mucosal mesenchymal stem cellderived exosomes: A potential therapeutic target in oral premalignant lesions [J]. Int J Oncol, 2019, 54(5):1567-1578. [33] Wang L, Yin P, Wang J, et al. Delivery of mesenchymal stem cells-derived extracellular vesicles with enriched miR-185 inhibits progression of OPMD [J]. Artif Cells Nanomed Biotechnol, 2019, 47(1):2481-2491. |