[1] Turan S, Bastepe M. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene [J]. Horm Res Paediatr, 2013, 80(4):229-241. [2] Yang W, Zuo Y, Zhang N, et al. GNAS locus: bone related diseases and mouse models [J]. Front Endocrinol (Lausanne), 2023, 14: 1255864. [3] Xie Y, Chen X, Xie Y, et al. GNAS gene mutations affecting XLΑS and bone health: A long neglected relationship [J]. Clin Genet, 2023, 104(3):279-286. [4] Maduro AI, Pinto Saraiva A, Pimenta Rodrigues O, et al. Albright’s hereditary osteodystrophy: an entity to recognize [J]. Rheumatology (Oxford), 2022, 61(11): e356-e357. [5] Linglart A, Levine MA, Jüppner H. Pseudohypoparathyroidism [J]. Endocrinol Metab Clin North Am, 2018, 47(4): 865-888. [6] Leclercq V, Benoit V, Lederer D, et al. Case report: An infantile lethal form of Albright hereditary osteodystrophy due to a GNAS mutation [J]. Clin Case Rep, 2018, 6(10): 1933-1940. [7] Lei R, Zhang K, Wei Y, et al. G-protein α-subunit Gsα is required for craniofacial morphogenesis [J]. PLoS One, 2016, 11(2): e0147535. [8] Xu R, Liu Y, Zhou Y, et al. GNAS loss causes chondrocyte fate conversion in cranial suture formation [J]. J Dent Res, 2022, 101(8): 931-941. [9] Plagge A, Gordon E, Dean W, et al. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding [J]. Nat Genet, 2004, 36(8): 818-826. [10] Mead TJ. Alizarin red and Alcian blue preparations to visualize the skeleton[M]. Apte SS. ADAMTS proteases: Methods and protocols. New York, NY: Springer, 2020. 207-212. [11] Liu B, Lu Y, Wang Y, et al. A protocol for isolation and identification and comparative characterization of primary osteoblasts from mouse and rat calvaria [J]. Cell Tissue Bank, 2019, 20(2): 173-182. [12] Wang Y, Tian H, Chen X. The distinct role of the extra-large G protein ɑ-subunit XLɑs [J]. Calcif Tissue Int, 2020, 107(3): 212-219. [13] He Q, Bouley R, Liu Z, et al. Large G protein α-subunit XLαs limits clathrin-mediated endocytosis and regulates tissue iron levels in vivo [J]. Proc Natl Acad Sci U S A, 2017, 114(45): E9559-E9568. [14] Galea GL, Zein MR, Allen S, et al. Making and shaping endochondral and intramembranous bones[J]. Dev Dyn, 2021, 250(3):414-449. [15] Liao J, Huang Y, Wang Q, et al. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development [J]. Cell Mol Life Sci, 2022, 79(3): 158. [16] Salhotra A, Shah HN, Levi B, et al. Mechanisms of bone development and repair [J]. Nat Rev Mol Cell Biol, 2020, 21(11): 696-711. [17] Zheng CX, Sui BD, Qiu XY, et al. Mitochondrial regulation of stem cells in bone homeostasis [J]. Trends Mol Med, 2020, 26(1): 89-104. [18] Shen L, Hu G, Karner CM. Bioenergetic metabolism in osteoblast differentiation [J]. Curr Osteoporos Rep, 2022, 20(1): 53-64. [19] Dobson PF, Dennis EP, Hipps D, et al. Mitochondrial dysfunction impairs osteogenesis, increases osteoclast activity, and accelerates age related bone loss [J]. Sci Rep, 2020, 10(1): 11643. |