[1] 翦新春.口腔黏膜下纤维性变及癌变机制研究进展[J].中国医师杂志,2015,17(9): 1281-1285. [2] Ekanayaka RP, Tilakaratne WM. Oral submucous fibrosis: review on mechanisms of malignant transformation [J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2016, 122(2): 192-199. [3] Teh MT, Tilakaratne WM, Chaplin T, et al. Fingerprinting genomic instability in oral submucous fibrosis [J]. J Oral Pathol Med, 2008, 37(7): 430-436. [4] Arakeri G, Patil SG, Aljabab AS, et al. Oral submucous fibrosis: An update on pathophysiology of malignant transformation [J]. J Oral Pathol Med, 2017, 46(6): 413-417. [5] Zhou SH, LI L, Jian XC, et al. The phosphorylation of survivin Thr34 by p34(cdc2) in carcinogenesis of oral submucous fibrosis [J]. Oncol Rep, 2008, 20(5): 1085-1091. [6] Sakthivel R, Ramamoorthy A, Jeddy N, et al. Evaluation and expression of survivin in potentially malignant lesions and squamous cell carcinoma: A comparative study [J]. Cureus, 2020, 12(4): e7551. [7] Keshav R, Narayanappa U. Expression of proliferating cell nuclear antigen (PCNA) in oral submucous fibrosis: an immunohistochemical study [J]. J Clin Diagn Res, 2015, 9(5): ZC20-ZC23. [8] Sheelam S, Reddy SP, Kulkarni PG, et al. Role of cell proliferation and vascularity in malignant transformation of potentially malignant disorders [J]. J Oral Maxillofac Pathol, 2018, 22(2): 281. [9] Ji WT, Yang SR, Chen JY, et al. Arecoline downregulates levels of p21 and p27 through the reactive oxygen species/mTOR complex 1 pathway and may contribute to oral squamous cell carcinoma [J]. Cancer Sci, 2012, 103(7): 1221-1229. [10] Lee PH, Chang MC, Chang WH, et al. Prolonged exposure to arecoline arrested human KB epithelial cell growth: Regulatory mechanisms of cell cycle and apoptosis [J]. Toxicology, 2006, 220(2-3): 81-89. [11] Ranganathan K, Kavitha R, Sawant SS, et al. Cytokeratin expression in oral submucous fibrosis-An immunohistochemical study [J]. J Oral Pathol Med, 2006, 35(1): 25-32. [12] Lalli A, Tilakaratne WM, Ariyawardana A, et al. An altered keratinocyte phenotype in oral submucous fibrosis: correlation of keratin K17 expression with disease severity [J]. J Oral Pathol Med, 2008, 37(4): 211-220. [13] Ray JG, Ranganathan K, Chattopadhyay A. Malignant transformation of oral submucous fibrosis: overview of histopathological aspects [J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2016, 122(2): 200-209. [14] Cooper J, Giancotti FG. Integrin signaling in cancer: Mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance [J]. Cancer Cell, 2019, 35(3): 347-367. [15] Moutasim KA, Jenei V, Sapienza K, et al. Betel-derived alkaloid up-regulates keratinocyte alphavbeta6 integrin expression and promotes oral submucous fibrosis [J]. J Pathol, 2011, 223(3): 366-377. [16] Chattopadhyay A, Ray JG. Molecular pathology of malignant transformation of oral submucous fibrosis [J]. J Environ Pathol Toxicol Oncol, 2016, 35(3): 193-205. [17] Pereira T, Surve R, Shetty S, et al. Qualitative expression of hypoxia-inducible factor-1α in malignant transformation of oral submucous fibrosis: An immunohistochemical study [J]. J Oral Maxillofac Pathol, 2020, 24(1):106-112. [18] Tsai CH, Lee SS, Chang YC. Hypoxic regulation of plasminogen activator inhibitor-1 expression in human buccal mucosa fibroblasts stimulated with arecoline [J]. J Oral Pathol Med, 2015, 44(9): 669-673. [19] Ho YC, Yang SF, Lee SS, et al. Regulation of hypoxia-inducible factor-1 alpha in human buccal mucosal fibroblasts stimulated with arecoline [J]. J Formos Med Assoc, 2017, 116(6): 484-487. [20] Koruza K, Murray AB, Mahon BP, et al. Biophysical characterization of cancer-related carbonic anhydrase Ⅸ [J]. Int J Mol Sci, 2020, 21(15): 5277. [21] Yang JS, Chen MK, Yang SF, et al. Increased expression of carbonic anhydrase Ⅸ in oral submucous fibrosis and oral squamous cell carcinoma [J]. Clin Chem Lab Med, 2014, 52(9): 1367-1377. [22] Desai RS, Mamatha GS, Khatri MJ, et al. Immunohistochemical expression of CD34 for characterization and quantification of mucosal vasculature and its probable role in malignant transformation of atrophic epithelium in oral submucous fibrosis [J]. Oral Oncol, 2010, 46(7): 553-558. [23] Rajendran R, Paul S, Mathews PP, et al. Characterisation and quantification of mucosal vasculature in oral submucous fibrosis [J]. Indian J Dent Res, 2005, 16(3): 83-91. [24] Murgod VV, Kale AD, Angadi PV, et al. Morphometric analysis of the mucosal vasculature in oral submucous fibrosis and its comparison with oral squamous cell carcinoma [J]. J Oral Sci, 2014, 56(2): 173-178. [25] Pandiar D, Shameena P. Immunohistochemical expression of CD34 and basic fibroblast growth factor (bFGF) in oral submucous fibrosis [J]. J Oral Maxillofac Pathol, 2014, 18(2): 155-161. [26] Rajendran R, Varkey S. Inducible nitric oxide synthase expression is upregulated in oral submucous fibrosis [J]. Indian J Dent Res, 2007, 18(3): 94-100. [27] Mohammed F, Manohar V, Jose M, et al. Estimation of copper in saliva and areca nut products and its correlation with histological grades of oral submucous fibrosis [J]. J Oral Pathol Med, 2015, 44(3): 208-213. [28] Calcinotto A, Kohli J, Zagato E, et al. Cellular senescence: aging, cancer, and injury [J]. Physiol Rev, 2019, 99(2): 1047-1078. [29] Pitiyage GN, Slijepcevic P, Gabrani A, et al. Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases [J]. J Pathol, 2011, 223(5): 604-617. [30] Illeperuma RP, Kim DK, Park YJ, et al. Areca nut exposure increases secretion of tumor-promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes [J]. Int J Cancer, 2015, 137(11): 2545-2557. [31] Zhang Y, Weinberg RA. Epithelial-to-mesenchymal transition in cancer: complexity and opportunities [J]. Front Med, 2018, 12(4): 361-373. [32] Das RK, Anura A, Pal M, et al. Epithelio-mesenchymal transitional attributes in oral sub-mucous fibrosis [J]. Exp Mol Pathol, 2013, 95(3): 259-269. [33] Zheng L, Jian X, Guo F, et al. miR-203 inhibits arecoline-induced epithelial-mesenchymal transition by regulating secreted frizzled-related protein 4 and transmembrane-4 L six family member 1 in oral submucous fibrosis [J]. Oncol Rep, 2015, 33(6): 2753-2760. [34] Zheng L, Guan ZJ, Pan WT, et al. Tanshinone suppresses arecoline-induced epithelial-mesenchymal transition in oral submucous fibrosis by epigenetically reactivating the p53 pathway [J]. Oncol Res, 2018, 26(3): 483-494. [35] Sharma M, Fonseca FP, Hunter KD, et al. Loss of oral mucosal stem cell markers in oral submucous fibrosis and their reactivation in malignant transformation [J]. Int J Oral Sci, 2020, 12(1): 23. [36] Chickooree D, Zhu K, Ram V, et al. A preliminary microarray assay of the miRNA expression signatures in buccal mucosa of oral submucous fibrosis patients [J]. J Oral Pathol Med, 2016, 45(9): 691-697. [37] Alexander AJ, Ramani P, Sherlin HJ, et al. Quantitative analysis of copper levels in areca nut plantation area-A role in increasing prevalence of oral submucous fibrosis: An in vitro study [J]. Indian J Dent Res, 2019, 30(2): 261-266. [38] Hernandez BY, Zhu X, Goodman MT, et al. Betel nut chewing, oral premalignant lesions, and the oral microbiome [J]. PLoS One, 2017, 12(2): e0172196. [39] 王媛,翦新春,刘德裕.应用QPCR验证口腔黏膜下纤维性变癌变分子标记物的研究[J].口腔医学研究,2017,33(10): 1027-1030. |