[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [2] Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell[J]. Net Methods, 2009, 6(5):377-382. [3] Han Y, Wang D, Peng L, et al. Single-cell sequencing: a promising approach for uncovering the mechanisms of tumor metastasis[J]. J Hematol Oncol, 2022, 15(1): 59. [4] Ahmed R, Zaman T, Chowdhury F, et al. Single-cell RNA sequencing with spatial transcriptomics of cancer tissues[J]. Int J Mol Sci, 2022, 23(6):3042. [5] Huang D, Ma N, Li X, et al. Advances in single-cell RNA sequencing and its applications in cancer research[J]. J Hematol Oncol, 2023, 16(1):98. [6] 史金鹏,吴凤英.中性粒细胞在肿瘤微环境中的作用及研究进展[J].现代免疫学,2024,44(1):72-76. [7] Quah HS, Cao EY, Suteja L, et al. Single cell analysis in head and neck cancer reveals potential immune evasion mechanisms during early metastasis[J]. Nat Commun, 2023, 14(1): 1680. [8] Chen J, Yang J, Li H, et al. Single-cell transcriptomics reveal the intratumoral landscape of infiltrated T-cell subpopulations in oral squamous cell carcinoma[J]. Mol Oncol, 2021, 15(4): 866-886. [9] Zhang B, Li H, Liu YT, et al.Single-cell chemokine receptor profiles delineate the immune contexture of tertiary lymphoid structures in head and neck squamous cell carcinoma[J]. Cancer Lett, 2023, 558:216105. [10] Jiang W, Hu K, Liu X, et al. Single-cell transcriptome analysis reveals the clinical implications of myeloid-derived suppressor cells in head and neck squamous cell carcinoma[J]. Pathol Oncol Res, 2023, 29: 1611210. [11] Wang J, Sun HC, Cao C, et al. Identification and validation of a novel signature based on cell-cell communication in head and neck squamous cell carcinoma by integrated analysis of single-cell transcriptome and bulk RNA-sequencing[J]. Front Oncol, 2023, 13:1136729. [12] Wu J, Shen Y, Zeng G, et al. SPP1+ TAM subpopulations in tumor microenvironment promote intravasation and metastasis of head and neck squamous cell carcinoma[J]. Cancer Gene Ther, 2024, 31(2):311-321. [13] Zhang P, Zhao Y, Xia X, et al. Expression of OLR1 gene on tumor-associated macrophages of head and neck squamous cell carcinoma, and its correlation with clinical outcome[J]. Oncoimmunology, 2023, 12(1):2203073. [14] Saba Y, Aizenbud I, Matanes D, et al. Early antitumor activity of oral Langerhans cells is compromised by a carcinogen[J]. Proc Natl Acad Sci U S A, 2022, 119(3):e2118424119. [15] Xiong M, Hu JJ, Yao ML, et al. Single-cell sequencing of head and neck carcinoma: Transcriptional landscape and prognostic model based on malignant epithelial cell features[J]. FASEB J, 2024, 38(1):e23354. [16] 刘仪凡,席亚明.癌症相关成纤维细胞在恶性血液肿瘤中的研究进展[J].中国实验血液学杂志, 2023, 31(6): 1885-1889. [17] Yang W, Zhang S, Li T, et al. Single-cell analysis reveals that cancer-associated fibroblasts stimulate oral squamous cell carcinoma invasion via the TGF-β/Smad pathway[J]. Acta Biochim Biophys Sin(Shanghai), 2022, 55(2): 262-273. [18] Choi JH, Lee BS, Jang JY, et al. Single-cell transcriptome profiling of the stepwise progression of head and neck cancer[J]. Nat Commun, 2023, 14(1):1055. [19] Song H, Lou C, Ma J, et al. Single-cell transcriptome analysis reveals changes of tumor immune microenvironment in oral squamous cell carcinoma after chemotherapy[J]. Front Cell Dev Biol, 2022, 10: 914120. [20] 张阳,杨丽娜,李玉洁,等.基于肿瘤微环境调节抗肿瘤转移的药理学研究进展[J/OL].中国实验方剂学杂志,1-10[2024-02-06]. [21] Obradovic A, Graves D, Korrer M, et al. Immunostimulatory cancer-associated fibroblast subpopulations can predict immunotherapy response in head and neck cancer[J]. Clin Cancer Res, 2022, 28(10): 2094-2109. [22] 李隆杰,柯章敏,刘怡婷,等.肿瘤微环境中微生物影响肿瘤发生发展的分子机制[J].激光生物学报,2023,32(5):385-392. [23] Galeano Niño JL, Wu H, LaCourse KD, et al. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer[J]. Nature, 2022, 611(7937): 810-817. [24] Liu C, Wang M, Zhang H, et al. Tumor microenvironment and immunotherapy of oral cancer[J]. Eur J Med Res, 2022, 27(1):198. [25] Hsieh YP, Wu YH, Cheng SM, et al. Single-cell RNA sequencing analysis for oncogenic mechanisms underlying oral squamous cell carcinoma carcinogenesis with Candida albicans infection[J]. Int J Mol Sci, 2022, 23(9):4833. [26] Bayik D, Lathia JD. Cancer stem cell-immune cell crosstalk in tumour progression[J]. Nat Rev Cancer, 2021, 21(8):526-536. [27] 李婷婷, 刘燕. 肿瘤微环境中间充质干细胞与癌症干细胞的关系及其在乳腺癌进展中的作用[J].中国癌症防治杂志, 2023, 15(6): 684-689. [28] Wang C, Li Y, Jia L, et al. CD276 expression enables squamous cell carcinoma stem cells to evade immune surveillance[J]. Cell Stem Cell, 2021, 28(9): 1597-1613.e7. [29] Xiao M, Zhang X, Zhang D, et al. Complex interaction and heterogeneity among cancer stem cells in head and neck squamous cell carcinoma revealed by single-cell sequencing[J]. Front Immunol, 2022, 13: 1050951. [30] Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer[J]. Cell, 2017, 171(7): 1611-1624.e24. [31] Chen J, Li K, Chen J, et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression[J]. Cancer Commun(Lond), 2022, 42(3): 223-244. [32] Ruffin AT, Cillo AR, Tabib T, et al. B cell signatures and tertiary lymphoid structures contribute to outcome in head and neck squamous cell carcinoma[J]. Nat Commun, 2021, 12(1): 3349. [33] Lee H, Park S, Yun JH, et al. Deciphering head and neck cancer microenvironment: Single-cell and spatial transcriptomics reveals human papillomavirus-associated differences[J]. J Med Virol, 2024, 96(1):e29386. [34] Rahim MK, Okholm TLH, Jones KB, et al. Dynamic CD8+ T cell responses to cancer immunotherapy in human regional lymph nodes are disrupted in metastatic lymph nodes[J]. Cell, 2023, 186(6): 1127-1143.e18. [35] Zhou L, Zeng Z, Egloff AM, et al. Checkpoint blockade-induced CD8+ T cell differentiation in head and neck cancer responders[J]. J Immunother Cancer, 2022, 10(1):e004034. [36] Ren S, Lan T, Wu F, et al. Intratumoral CD103+ CD8+ T cells predict response to neoadjuvant chemoimmunotherapy in advanced head and neck squamous cell carcinoma[J]. Cancer Commun(Lond), 2023, 43(10): 1143-1163. [37] Zhang J, Liu Y, Xia L,et al. Constructing heterogeneous single-cell landscape and identifying microenvironment molecular characteristics of primary and lymphatic metastatic head and neck squamous cell carcinoma[J]. Comput Biol Med, 2023, 165:107459. [38] Lin M, Sade-Feldman M, Wirth L, et al. Single-cell transcriptomic profiling for inferring tumor origin and mechanisms of therapeutic resistance[J]. NPJ Precis Oncol, 2022, 6(1):71. [39] Arora R, Cao C, Kumar M, et al. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response[J]. Nat Commun, 2023, 14(1): 5029. [40] Zhang J, Song C, Tian Y, et al. Single-cell RNA sequencing in lung cancer: revealing phenotype shaping of stromal cells in the microenvironment[J]. Front Immunol, 2021, 12: 802080. |