[1] Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m6A RNA methylation [J]. Nat Rev Genet,2014,15(5):293-306 [2] Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation [J]. Cell, 2017, 169(7):1187-1200. [3] Meyer KD, Jaffrey SR. Rethinking m6A readers, writers, and erasers [J]. Annu Rev Cell Dev Biol, 2017, 33:319-342. [4] Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase [J]. Cell Res, 2014, 24(2):177-189. [5] Zhang S, Zhao BS, Zhou A, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program [J]. Cancer Cell, 2017, 31(4):591-606. [6] Huang H, Weng H, Sun W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation [J]. Nat Cell Biol, 2018, 20(3):285-295. [7] 金岩.口腔颌面发育生物学与再生医学[M].第2版.北京:人民卫生出版社,2020.1-22. [8] Sheng R, Wang Y, Wu Y, et al. METTL3-Mediated m6A mRNA methylation modulates tooth root formation by affecting NFIC translation [J]. J Bone Miner Res, 2021, 36(2):412-423. [9] Tian C, Chai J, Liu W, et al. Role of the demethylase AlkB homolog H5 in the promotion of dentinogenesis [J]. Front Physiol, 2022, 13:923185. [10] Sun Q, Zhao T, Li B, et al. FTO/RUNX2 signaling axis promotes cementoblast differentiation under normal and inflammatory condition [J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(12):119358. [11] Luo H, Liu W, Zhang Y, et al. METTL3-mediated m6A modification regulates cell cycle progression of dental pulp stem cells [J]. Stem Cell Res Ther, 2021, 12(1):159. [12] Cai W, Ji Y, Han L, et al. METTL3-dependent glycolysis regulates dental pulp stem cell differentiation [J]. J Dent Res, 2022, 101(5):580-589. [13] Jiang W, Zhu P, Huang F, et al. The RNA methyltransferase METTL3 promotes endothelial progenitor cell angiogenesis in mandibular distraction osteogenesis via the PI3K/AKT pathway [J]. Front Cell Dev Biol, 2021, 9:720925. [14] Xiong Q, Liu C, Zheng X, et al. METTL3-mediated m6A RNA methylation regulates dorsal lingual epithelium homeostasis [J]. Int J Oral Sci, 2022, 14(1):26. [15] Caetano AJ, Yianni V, Volponi A, et al. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease [J]. Elife, 2021, 10:e62810. [16] Feng Z, Li Q, Meng R, et al. METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells [J]. J Cell Mol Med, 2018, 22(5):2558-2568. [17] Lin W, Xu H, Wu Y, et al. In silico genome-wide identification of m6A-associated SNPs as potential functional variants for periodontitis [J]. J Cell Physiol, 2020, 235(2): 900-908. [18] Zhang X, Zhang S, Yan X, et al. m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment regulation of periodontitis [J]. J Cell Mol Med, 2021, 25(7):3634-3645. [19] Wu Z, Lin W, Yuan Q, et al. A genome-wide association analysis:m6A-SNP related to the onset of oral ulcers [J]. Front Immunol, 2022, 13:931408. [20] 胡勤刚,泥艳红,王雨晗.代谢组学在口腔鳞状细胞癌早期诊断及精准诊疗中的研究进展[J].口腔医学研究,2022,38(3):207-211. [21] Wu X, Tang J, Cheng B. Oral squamous cell carcinoma gene patterns connected with RNA methylation for prognostic prediction [J]. Oral Dis, 2022. [22] Xu L, Yu C, Du XJ. Prognostic evaluation for oral squamous cell carcinoma:A novel method based on m6A methylation regulators [J]. Curr Med Sci, 2022, 42(4):841-846. [23] Shan L, Lu Y, Song Y, et al. Identification of nine m6A-related long noncoding RNAs as prognostic signatures associated with oxidative stress in oral cancer based on data from the cancer genome atlas [J]. Oxid Med Cell Longev, 2022, 2022:9529814. [24] Yang Q, Cheng C, Zhu R, et al. A N6-methyladenosine-related long noncoding RNAs model for predicting prognosis in oral squamous cell carcinoma: Association with immune cell infiltration and tumor metastasis [J]. Oral Oncol, 2022, 127:105771. [25] Wang X, Wu J, Zhang L, et al. Methylated RNA immunoprecipitation sequencing reveals the m6A landscape in oral squamous cell carcinoma [J]. J Immunol Res, 2022, 2022:7277583. [26] Wu S, Makeudom A, Sun X, et al. Overexpression of methyltransferase-like 3 and 14 in oral squamous cell carcinoma [J]. J Oral Pathol Med, 2022, 51(2):134-145. [27] Ai Y, Liu S, Luo H, et al. METTL3 intensifies the progress of oral squamous cell carcinoma via modulating the m6A amount of PRMT5 and PD-L1 [J]. J Immunol Res, 2021, 2021:6149558. [28] Liu L, Wu Y, Li Q, et al. METTL3 promotes tumorigenesis and metastasis through BMI1 m6A methylation in oral squamous cell carcinoma [J]. Mol Ther, 2020, 28(10):2177-2190. [29] Zhao W, Cui Y, Liu L, et al. METTL3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-Myc stability via YTHDF1-mediated m6A modification [J]. Mol Ther Nucleic Acids, 2020, 20:1-12. [30] Xu T, Zhang W, Chai L, et al. Methyltransferase-like 3-induced N6-methyladenosine upregulation promotes oral squamous cell carcinoma by through p38 [J]. Oral Dis, 2023, 29(2):639-648. [31] Wang F, Zhu Y, Cai H, et al. N6-methyladenosine methyltransferase METTL14-mediated autophagy in malignant development of oral squamous cell carcinoma [J]. Front Oncol, 2021, 11:738406. [32] Li J, Momen-Heravi F, Wu X, et al. Mechanism of METTL14 and m6A modification of lncRNA MALAT1 in the proliferation of oral squamous cell carcinoma cells [J]. Oral Dis, 2022, 29(5):2012-2026. [33] Li X, Chen W, Gao Y, et al. Fat mass and obesity-associated protein regulates arecoline-exposed oral cancer immune response through programmed cell death-ligand 1 [J]. Cancer Sci, 2022, 113(9):2962-2973. [34] Li DQ, Huang CC, Zhang G, et al. FTO demethylates YAP mRNA promoting oral squamous cell carcinoma tumorigenesis [J]. Neoplasma, 2022, 69(1):71-79. [35] Wang F, Liao Y, Zhang M, et al. N6-methyladenosine demethyltransferase FTO-mediated autophagy in malignant development of oral squamous cell carcinoma [J]. Oncogene, 2021, 40(22):3885-3898. [36] Huang GZ, Wu QQ, Zheng ZN, et al. M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT [J]. Aging(Albany NY), 2020, 12(12):11667-11684. [37] Zhu F, Yang T, Yao M, et al. HNRNPA2B1, as a m6A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma [J]. Front Oncol, 2021, 11:716921. [38] Xu K, Dai X, Wu J, et al. N6-methyladenosine(m6A)reader IGF2BP2 stabilizes HK2 stability to accelerate the Warburg effect of oral squamous cell carcinoma progression [J]. J Cancer Res Clin Oncol, 2022, 148(12):3375-3384. [39] Zhao W, Liu J, Wu J, et al. High-throughput microarray reveals the epitranscriptome-wide landscape of m6A-modified circRNA in oral squamous cell carcinoma [J]. BMC Genomics, 2022, 23(1):1-13. [40] Cui Y, Liu J, Liu L, et al. m6A-modified circFOXK2 targets GLUT1 to accelerate oral squamous cell carcinoma aerobic glycolysis [J]. Cancer Gene Ther, 2023, 30(1):163-171. [41] Gong J, Wang C, Zhang F, et al. Effects of allocryptopine on the proliferation and epithelial-mesenchymal transition of oral squamous cell carcinoma through m6A mediated hedgehog signaling pathway [J]. J Environ Pathol Toxicol Oncol, 2022, 41(2):15-24. [42] Luo R, Xie L, Lin Y, et al. Oxymatrine suppresses oral squamous cell carcinoma progression by suppressing CXC chemokine receptor 4 in an m6A modification decrease dependent manner [J]. Oncol Rep, 2022, 48(4):1-10. [43] Chen J, Li S, Huang Z, et al. METTL3 suppresses anlotinib sensitivity by regulating m6A modification of FGFR3 in oral squamous cell carcinoma [J]. Cancer Cell Int, 2022, 22(1):295. [44] Niu X, Xu J, Liu J, et al. Landscape of N6-methyladenosine modification patterns in human ameloblastoma [J]. Front Oncol, 2020, 10:556497. |