[1] 陈景杨,洪泽鑫,陈亮,等.3D打印技术在骨科医疗器械中的研究进展[J].中国医疗器械杂志,2023,47(5):533-538. [2] Zheng Y, Han Q, Wang J, et al. Promotion of osseointegration between implant and bone interface by titanium alloy porous scaffolds prepared by 3D Printing [J]. ACS Biomater Sci Eng, 2020, 6(9):5181-5190. [3] Nagarajan N, Dupret-Bories A, Karabulut E, et al. Enabling personalized implant and controllable biosystem development through 3D printing [J]. Biotechnol Adv, 2018, 36(2):521-533. [4] Gulati K, Prideaux M, Kogawa M, et al. Anodized 3D-printed titanium implants with dual micro and nano scale topography promote interaction with human osteoblasts and osteocyte like cells [J]. J Tissue Eng Regen Med, 2017, 11(12):3313-3325. [5] Dhir S, Mahesh L, Kurtzman GM, et al. Peri-implant and periodontal tissues: a review of differences and similarities [J]. Compend Contin Educ Dent, 2013, 34(7):69-75. [6] Atsuta I, Ayukawa Y, Kondo R, et al. Soft tissue sealing around dental implants based on histological interpretation [J]. J Prosthodont Res, 2016, 60(1):3-11. [7] Hämmerle CH, Giannobile WV, Working Group 1 of the European Workshop on Periodontology. Biology of soft tissue wound healing and regeneration-consensus report of Group 1 of the 10th European Workshop on Periodontology [J]. J Clin Periodontol, 2014, 41(Suppl 15):S1-S5. [8] Al Rezk F, Trimpou G, Lauer HC, et al. Response of soft tissue to different abutment materials with different surface topographies: a review of the literature [J]. Gen Dent, 2018, 66(1):18-25. [9] Abdallah MN, Badran Z, Ciobanu O, et al. Strategies for optimizing the soft tissue seal around osseointegrated implants [J]. Adv Healthc Mater, 2017,6(20). [10] Zhou P, Mao F, He F, et al. Screening the optimal hierarchical micro/nano pattern design for the neck and body surface of titanium implants [J]. Colloids Surf B Biointerfaces, 2019, 178:515-524. [11] Li T, Wang N, Chen S, et al. Antibacterial activity and cytocompatibility of an implant coating consisting of TiO2 nanotubes combined with a GL13K antimicrobial peptide [J]. Int J Nanomedicine, 2017, 12:2995-3007. [12] Ran L, Wang C, Xin W, et al. Effects of hydrogenated TiO2 nanotube arrays on protein adsorption and compatibility with osteoblast-like cells [J]. Int J Nanomedicine, 2018, 13:2037-2049. [13] Wang C, Xin W, Ran L, et al. Responses of human gingival fibroblasts to superhydrophilic hydrogenated titanium dioxide nanotubes [J]. Colloids Surf B Biointerfaces, 2021, 198:111489. [14] Nasirpouri F, Yousefi I, Moslehifard E, et al. Tuning surface morphology and crystallinity of anodic TiO2 nanotubes and their response to biomimetic bone growth for implant applications [J]. Surf Coat Technol, 2017, 315:163-171. [15] Xu Z, Lai Y, Wu D, et al. Increased mesenchymal stem cell response and decreased staphylococcus aureus adhesion on titania nanotubes without pharmaceuticals [J]. Biomed Res Int, 2015, 2015:172898. [16] Kulkarni M, Mazare A, Park J, et al. Protein interactions with layers of TiO2 nanotube and nanopore arrays: Morphology and surface charge influence [J]. Acta Biomater, 2016, 45:357-366. [17] Pendegrass CJ, Middleton CA, Gordon D, et al. Measuring the strength of dermal fibroblast attachment to functionalized titanium alloys in vitro [J]. J Biomed Mater Res A, 2010, 92(3): 1028-1037. [18] Nothdurft FP, Fontana D, Ruppenthal S, et al. Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: a comparison of materials and surface topographies [J]. Clin Implant Dent Relat Res, 2015, 17(6):1237-1249. [19] Liñares A, Muñoz F, Permuy M, et al. Soft tissue histomorphology at implants with a transmucosal modified surface. A study in minipigs [J]. Clin Oral Implants Res, 2015, 26(9):996-1005. [20] 天津理工大学.一种用于促进软组织整合和成骨的新型牙科植入物的制备方法:中国,202410556448.5[P].2024-08-23. [21] Chen X, Liu L, Yu PY, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals [J]. Science, 2011, 331(6018):746-750. [22] Kato E, Sakurai K, Yamada M. Periodontal-like gingival connective tissue attachment on titanium surface with nano-ordered spikes and pores created by alkali-heat treatment [J]. Dent Mater, 2015, 31(5):116-130. [23] Lai Y, Chen J, Zhang T, et al. Effect of 3D microgroove surface topography on plasma and cellular fibronectin of human gingival fibroblasts [J]. J Dent, 2013, 41(11):1109-1121. [24] 闵子洋,穆妮热艾力,郑耘昊,等.细胞外基质力学微环境与细胞间相互作用的机制与特征[J].中国组织工程研究,2022,26(25): 4034-4045. [25] Aiyelabegan HT, Sadroddiny E. Fundamentals of protein and cell interactions in biomaterials [J]. Biomed Pharmacother, 2017, 88:956-970. [26] Puckett SD, Lee PP, Ciombor DM, et al. Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices [J]. Acta Biomater, 2010, 6(6):2352-2362. [27] Tan J, Zhao C, Zhou J, et al. Co-culturing epidermal keratinocytes and dermal fibroblasts on nano-structured titanium surfaces [J]. Mater Sci Eng C Mater Biol Appl, 2017, 78:288-295. [28] Ferrà-Cañellas MDM, Llopis-Grimalt MA, Monjo M, et al. Tuning nanopore diameter of titanium surfaces to improve human gingival fibroblast response [J]. Int J Mol Sci, 2018, 19(10):2882-2896. [29] Kleinschmidt EG, Schlaepfer DD. Focal adhesion kinase signaling in unexpected places [J]. Curr Opin Cell Biol, 2017, 45:24-30. [30] Wei L, Chen Q, Zheng Y, et al. Potential role of integrin α5β1/FAK and actin cytoskeleton in the mechanotransduction and response of human gingival fibroblasts cultured on 3D PLGA scaffold [J]. Med Sci Monit, 2020, 26:e921626. [31] Moon YH, Yoon MK, Moon JS, et al. Focal adhesion linker proteins expression of fibroblast related to adhesion in response to different transmucosal abutment surfaces [J]. J Adv Prosthodont, 2013, 5(3):341-350. [32] Katoh K. Signal transduction mechanisms of focal adhesions: Src and FAK-mediated cell response [J]. Front Biosci (Landmark Ed), 2024, 29(11): 392. [33] Cui LH, Noh JM, Kim DH, et al. Nanotopography promotes cardiogenesis of pluripotent stem cell-derived embryoid bodies through focal adhesion kinase signaling [J]. Biochem Biophys Res Commun, 2024, 735: 150796. |