
Journal of Oral Science Research ›› 2025, Vol. 41 ›› Issue (10): 844-848.DOI: 10.13701/j.cnki.kqyxyj.2025.10.003
Previous Articles Next Articles
MA Yushuo, XU Hui*
Received:2024-12-02
Published:2025-10-23
MA Yushuo, XU Hui. Progress in Mechanism of Natural Drug Active Ingredients Against Radiation-induced Salivary Gland Damage[J]. Journal of Oral Science Research, 2025, 41(10): 844-848.
| [1] Liu Z, Dong L, Zheng Z, et al. Mechanism, prevention, and treatment of radiation-induced salivary gland injury related to oxidative stress [J]. Antioxidants (Basel), 2021, 10(11): 1666. [2] Hosoi K, Yao C, Hasegawa T, et al. Dynamics of salivary gland AQP5 under normal and pathologic conditions [J]. Int J Mol Sci, 2020, 21(4): 1182. [3] 麦麦提吐尔逊·阿布都乃比,热则耶·麦麦提祖农,张鹏鑫,等.放射后氧化应激对大鼠颌下腺腺泡细胞凋亡的影响[J].口腔医学研究,2024,40(7): 605-610. [4] Buss LG, Rheinheimer BA, Limesand KH. Radiation-induced changes in energy metabolism result in mitochondrial dysfunction in salivary glands [J]. Sci Rep, 2024, 14(1): 845. [5] Grigalunas M, Brakmann S, Waldmann H. Chemical evolution of natural product structure [J]. J Am Chem Soc, 2022, 144(8): 3314-3329. [6] Gasmi A, Shanaida M, Oleshchuk O, et al. Natural ingredients to improve immunity [J]. Pharmaceuticals (Basel), 2023, 16(4):528. [7] Dong M, Li J, Yang D, et al. Biosynthesis and pharmacological activities of flavonoids, triterpene saponins and polysaccharides derived from astragalus membranaceus [J]. Molecules, 2023, 28(13): 5018. [8] Moudgil KD, Venkatesha SH. The anti-inflammatory and immunomodulatory activities of natural products to control autoimmune inflammation [J]. Int J Mol Sci, 2022, 24(1): 95. [9] Sakat MS, Kılıç K, Sahin A, et al. The protective efficacy of quercetin and naringenin against radiation-related submandibular gland injury in female rats: A histopathological, immunohistochemical, and biochemical study [J]. Arch Oral Biol, 2022, 142: 105510. [10] Saafan SM, Mohamed SA, Noreldin AE, et al. Rutin attenuates D-galactose-induced oxidative stress in rats’ brain and liver: Molecular docking and experimental approaches [J]. Food Funct, 2023, 14(12): 5728-5751. [11] Negahdari R, Bohlouli S, Sharifi S, et al. Therapeutic benefits of rutin and its nanoformulations [J]. Phytother Res, 2021, 35(4):1719-1738. [12] Ahmed SF, El-Maghraby EMF, Rashad MM, et al. Iron overload induced submandibular glands toxicity in gamma irradiated rats with possible mitigation by hesperidin and rutin [J]. BMC Pharmacol Toxicol, 2024, 25(1): 22. [13] Ferreira de Oliveira JMP, Santos C, Fernandes E. Therapeutic potential of hesperidin and its aglycone hesperetin: Cell cycle regulation and apoptosis induction in cancer models [J]. Phytomedicine, 2020, 73: 152887. [14] Li X, Huang W, Tan R, et al. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect [J]. Biomed Pharmacother, 2023, 159: 114222. [15] Imperatrice M, Cuijpers I, Troost FJ, et al. Hesperidin functions as an ergogenic aid by increasing endothelial function and decreasing exercise-induced oxidative stress and inflammation, thereby contributing to improved exercise performance [J]. Nutrients, 2022, 14(14): 2955. [16] Sakat MS, Kılıç K, Sahin A, et al. The protective efficacy of hesperidin and thymol on radiation-induced submandibular gland damage [J]. Laryngoscope, 2023, 133(8): 1885-1892. [17] Mostafa OAA, Ibrahim F, Borai E. Protective effects of hesperidin in cyclophosphamide-induced parotid toxicity in rats [J]. Sci Rep, 2023, 13(1): 158. [18] Ding M, Zhu Y, Xu X, et al. Naringenin inhibits acid sphingomyelinase-mediated membrane raft clustering to reduce NADPH oxidase activation and vascular inflammation [J]. J Agric Food Chem, 2024, 72(13): 7130-7139. [19] Kaur G, Kaur M, Bansal M. New insights of structural activity relationship of curcumin and correlating their efficacy in anticancer studies with some other similar molecules [J]. Am J Cancer ResAm J Cancer Res, 2021, 11(8): 3755-3765. [20] Zhang T, Liu C, Ma S, et al. Protective effect and mechanism of action of rosmarinic acid on radiation-induced parotid gland injury in rats [J]. Dose Response, 2020, 18(1): 1559325820907782. [21] Kim JM, Kim JW, Choi ME, et al. Protective effects of curcumin on radioiodine-induced salivary gland dysfunction in mice [J]. J Tissue Eng Regen Med, 2019, 13(4): 674-681. [22] Ge J, Liu Z, Zhong Z, et al. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery [J]. Bioorg Chem, 2022, 124: 105817. [23] Nanjaiah H, Vallikannan B. Lutein upregulates the PGC-1α, NRF1, and TFAM expression by AMPK activation and downregulates ROS to maintain mtDNA integrity and mitochondrial biogenesis in hyperglycemic ARPE-19 cells and rat retina [J]. Biotechnol Appl Biochem, 2019, 66(6): 999-1009. [24] Zhou XR, Wang XY, Sun YM, et al. Glycyrrhizin protects submandibular gland against radiation damage by enhancing antioxidant defense and preserving mitochondrial homeostasis [J]. Antioxid Redox Signal, 2024, 41(10-12): 723-743. [25] Tang Z, Zhong M, Cao H, et al. Polysaccharide of dicliptera chinensis (L.) juss. alleviated cholestatic liver disease by modulating the FXR pathway [J]. Int J Biol Macromol, 2024, 281(Pt 4): 136393. [26] Zhao L, Zhu Y, Zhang L, et al. Dicliptera chinensis-derived polysaccharide enhanced the growth activity of submandibular gland cells in vitro after radiotherapy [J]. Heliyon, 2024, 10(10): e31005. [27] An EK, Hwang J, Kim SJ, et al. Comparison of the immune activation capacities of fucoidan and laminarin extracted from laminaria japonica [J]. Int J Biol Macromol, 2022, 208: 230-242. [28] Nigam S, Singh R, Bhardwaj SK, et al. Perspective on the therapeutic applications of algal polysaccharides [J]. J Polym Environ, 2022, 30(3): 785-809. [29] 赵歆,徐杨,柴溶,等.海带多糖通过抑制NF-κB和JNK通路减轻放射诱导的小鼠下颌下腺炎症反应[J].中国病理生理杂志,2021,37(9): 1545-1553. [30] Kim YM, Kim JM, Kim JW, et al. Fucoidan attenuates radioiodine-induced salivary gland dysfunction in mice [J]. BMC Oral Health, 2019, 19(1): 198. [31] Meeks L, Pessoa DDO, Martinez JA, et al. Integration of metabolomics and transcriptomics reveals convergent pathways driving radiation- induced salivary gland dysfunction [J]. Physiol Genomics, 2021, 53(3): 85-98. [32] Shan H, Li X, Ouyang C, et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function [J]. Ecotoxicol Environ Saf, 2022, 231: 113170. [33] Sun YM, Wang XY, Zhou XR, et al. Salidroside ameliorates radiation damage by reducing mitochondrial oxidative stress in the submandibular gland [J]. Antioxidants (Basel), 2022, 11(7): 1414. [34] Gabbai-Armelin PR, Sales LS, Ferrisse TM, et al. A systematic review and meta-analysis of the effect of thymol as an anti-inflammatory and wound healing agent: A review of thymol effect on inflammation and wound healing [J]. Phytother Res, 2022, 36(9): 3415-3443. [35] Luff M, Evans L, Hiyari S, et al. Nigella sativa oil mitigates xerostomia and preserves salivary function in radiotherapy-treated mice [J]. Laryngoscope Investig Otolaryngol, 2023, 8(4): 912-920. [36] Jeong JH, Lee WH, Min SC, et al. Evaluation of the antiviral efficacy of subcutaneous nafamostat formulated with glycyrrhizic acid against SARS-CoV-2 in a murine model [J]. Int J Mol Sci, 2023, 24(11): 9579. [37] Zhou H, Zhang M, Cao H, et al. Research progress on the dynergistic anti-tumor effect of natural anti-tumor components of Chinese herbal medicine combined with chemotherapy drugs [J]. Pharmaceuticals (Basel), 2023, 16(12): 1734. [38] Afshari H, Noori S, Zarghi A. A novel combination of metformin and resveratrol alleviates hepatic steatosis by activating autophagy through the cAMP/AMPK/SIRT1 signaling pathway [J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(11): 3135-3148. |
| [1] | WANG Xiqian, LI Juqiang, PENG Liwei. Clinical Retrospective Study on 14 Cases of Secretory Carcinoma of Salivary Gland [J]. Journal of Oral Science Research, 2025, 41(8): 690-694. |
| [2] | BAO Luri, SHI Lin. Clinicopathological Factors and Biomarker Immunoprofile Affecting Prognosis of Salivary Ductal Carcinoma. [J]. Journal of Oral Science Research, 2024, 40(11): 1013-1018. |
| [3] | WU Yuqi, HUANG Guilin. Research Progress of NLRP3 in Radiation Injury of Oral and Maxillofacial Tissues [J]. Journal of Oral Science Research, 2022, 38(9): 815-818. |
| [4] | CUI Tianning, ZHANG Nini, LONG Yuanzhu, HUANG Guilin, ZHANG Ligang, TANG Jianhong, LUO Qinliang. Repair of Salivary Gland Radiation Injury by Exosomes from Human Amniotic Mesenchymal Stem Cells Pretreated with Hypoxia [J]. Journal of Oral Science Research, 2022, 38(12): 1145-1150. |
| [5] | ZOU Huihui, XU Wenguang, YIN Xiteng, HAN Wei, JIANG Linlin. Analysis of Clinical and Pathological Factors Affecting Prognosis of Patients in Major Salivary Glands Adenoid Cystic Carcinoma Based on SEER Database [J]. Journal of Oral Science Research, 2020, 36(2): 167-171. |
| [6] | ZHANG Shuguang, WANG Yulong, XU Wenguang, YIN Xiteng, HAN Wei, ZOU Huihui. Prognostic Factors of Mucoepidermoid Carcinoma of Salivary Glands: a SEER Database-based Study [J]. Journal of Oral Science Research, 2020, 36(10): 915-920. |
| [7] | LI Kuang-zheng,JIANG Yi-xia,FAN Xiao-sheng, REN Qian, CAO Fang-yun. Expression and Significance of CD147, MMP-9, and VEGF in Salivary Gland Tumors [J]. Journal of Oral Science Research, 2018, 34(12): 1297-1301. |
| [8] | LIU Xin-can,ZHANG De-bao,LIU Zai-long. Relationship between Expression of CD29 and Pathogenesis of Human Salivary Gland Benign and Malignant Tumors [J]. Journal of Oral Science Research, 2018, 34(11): 1204-1207. |
| [9] | PEI Hao, XIA Dong-jing, HUANG Ying-ying. Expression of STAT6 in Salivary Gland Adenoid Cystic Carcinoma and Its Effect on Cell Proliferation and Invasion [J]. Journal of Oral Science Research, 2018, 34(11): 1212-1216. |
| [10] | YANG Nan, ZHANG Rui, WANG Ru. Ectopic Salivary Gland in the Middle Region of Neck Was Misdiagnosed as Thyroglossal Cyst: A Case Report [J]. Journal of Oral Science Research, 2018, 34(1): 90-91. |
| [11] | DU Bai-xing, YIN Xiao-peng, WANG Bing, LIU Hui, LIN Bin, JIANG De-qi, LIN Zhao-quan, GONG Zhong-cheng. [doi] 10.13701/j.cnki.kqyxyj.2017.02.007 Expression and Significance of RAGE and RECK in Recurrence and Malignant Transformation of Salivary Gland Pleomorphic Adenoma. [J]. Journal of Oral Science Research, 2017, 33(2): 145-149. |
| [12] | JIANG De-qi, GONG Zhong-cheng, LIN Zhao-quan, YIN Xiao-peng, DU Bai-xing, WANG Yue-sen. Significance of CT Combined with Frozen Section Examination on Diagnosis of Salivary Gland Tumor [J]. Journal of Oral Science Research, 2016, 32(8): 823-827. |
| [13] | KEREMU Abasi, CHEN Qing-li, LING Bin, LIU Hui, LIN Zhao-quan, GONG Zhong-cheng.. Salivary Duct Carcinoma: A Clinical Analysis of 10 Cases. [J]. Journal of Oral Science Research, 2016, 32(7): 712-715. |
| [14] | LU Hao, LIU Shi-wei, CUI Zhi, et al.. Roles of Apoptosis and Mitosis in the Regeneration of Rat Parotid Gland following Ligation-induced Atrophy. [J]. Journal of Oral Science Research, 2015, 31(5): 444-447. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||