口腔医学研究 ›› 2018, Vol. 34 ›› Issue (8): 905-909.DOI: 10.13701/j.cnki.kqyxyj.2018.08.025

• 口腔生物材料研究 • 上一篇    下一篇

载VEGF/VAN多层海藻酸钠-壳聚糖微球的制备及其体外抗感染能力和稳定性研究

徐一驰1, 赵楚翘1, 陈楷2, 刘定坤1, 金巨楼1, 孙梦洁1, 刘志辉1*   

  1. 1. 吉林大学口腔医院修复科 吉林 长春 130021;
    2. 吉林大学口腔医院颌面外科 吉林 长春 130021
  • 收稿日期:2018-02-11 出版日期:2018-08-28 发布日期:2018-08-23
  • 通讯作者: 刘志辉,E-mail:liuzhihui1975@sina.com
  • 作者简介:徐一驰(1990~ ),男,江苏苏州人,硕士,主要从事口腔组织工程研究。
  • 基金资助:
    吉林省重点科技研发项目(编号:20180201056YY);吉林省医药健康产业发展引导资金(编号:201603028YY);吉林省医药产业发展引导资金(编号:20150311070YY);长春市“双十工程”(编号:16ss12);长春市科技计划项目(编号:17DY024)

Preparation, Anti-infect Ability in Vitro, and Stability of Multi-layer Sodium Alginate-chitosan Microspheres Loading VEGF and VAN

XU Yi-chi1, ZHAO Chu-qiao1, CHEN Kai2, LIU Ding-kun1, JIN Ju-lou1, SUN Meng-jie1, LIU Zhi-hui1*   

  1. 1. Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China;
    2. Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, China
  • Received:2018-02-11 Online:2018-08-28 Published:2018-08-23

摘要: 目的:制备载有血管内皮生长因子(VEGF)和万古霉素(VAN)的多层海藻酸钠(SA)-壳聚糖(CS)微球,并讨论其体外抗感染能力和稳定性。方法:采用滴注法和层层自组装技术制备多层载药微球;纸片法实验检测微球体外抗感染能力;分别采用ELISA法和紫外分光光度法测定微球中VEGF和VAN的载药量和包封率;微球经过不同条件处理后,通过SEM观察微球表面和截面形态,并分别测定不同条件处理后微球内VEGF和VAN的有效释放量的变化。结果:肉眼观制备出的微球呈类球形;VEGF和VAN的载药量分别为6.63×10-5%和1.39%,包封率分别为72.1%和3.37%;微球溶解后,溶液对金黄色葡萄球菌的抑菌环直径为(12.61±1.01) mm;不同条件处理后,微球直径约为900~1100 μm,表面完整,存在少许褶皱,截面呈致密网状结构;不同条件处理后微球内VEGF和VAN的有效释放量均有一定下降。结论:本实验制备的载VEGF/VAN多层微球粒径均匀,对金黄色葡萄球菌具有一定抑菌效果,需低温(-80 ℃)且避光储存。

关键词: 海藻酸钠, 壳聚糖, 血管内皮生长因子, 万古霉素, 微球

Abstract: Objective: To prepare multilayer sodium alginate/chitosan microspheres containing vascular endothelial growth factor (VEGF) and vancomycin (VAN) and discuss their in vitro anti-infective ability and stability. Methods: Multilayer drug-loaded microspheres were prepared by infusion method and layer-by-layer self-assembly technique. The in vitro anti-infective ability of microspheres was tested by paper strip method. The drug loading and encapsulation efficiency of VEGF and VAN in the microspheres were determined by ELISA and UV spectrophotometry. The surface and cross section morphology of microspheres were observed by scanning electron microscope after different temperatures and light treatment of the microspheres. The changes of effective release amount of VEGF and VAN in microspheres after different conditions were determined. Results: The prepared microspheres were spherical in shape. After the microspheres were dissolved, the diameter of the bacteriostatic loop of the solution against Staphylococcus aureus (ATCC25923) was (12.61±1.01)mm. After treatment under different conditions, the microspheres diameter was 900-1100μm, the surface was complete. There was a little fold, and the cross-section was dense network structure. The drug loading of VEGF and VAN in the microspheres were 6.63 × 10-5% and 1.39%, respectively, and the encapsulation efficiencies were 72.1% and 3.37%, respectively. Under different conditions, the effective release amount of VEGF and VAN in the microspheres decreased. Conclusion: An uniform particle size was prepared, which had certain inhibitory effect on Staphylococcus aureus and required low temperature (-80℃) dark storage.

Key words: Sodium alginate, Chitosan, Vascular endothelial growth factor, Vancomycin, Microspheres