[1] Linge BO, Linge L. Apical root resorption in upper anterior teeth[J]. Eur J Orthod, 1983, 5(3):173-183. [2] Levander E, Malmgren O. Evaluation of the risk of root resorption during orthodontic treatment: a study of upper incisors[J]. Eur J Orthod, 1988, 10(1):30-38. [3] Weltman B, Vig KWL, Fields HW, et al. Root resorption associated with orthodontic tooth movement: a systematic review[J]. Am J Orthod Dentofacial Orthop, 2010, 137(4):462-476. [4] Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype?[J]. J Dent Res, 2005, 84(5):390-406. [5] Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part Ⅰ: The basic science aspects[J]. Angle Orthod, 2002, 72(2):175-179. [6] Brezniak N, Wasserstein A. Orthodontically induced inflammatory root resorption. Part Ⅱ: The clinical aspects[J]. Angle Orthod, 2002, 72(2):180-184. [7] Costopoulos G, Nanda R. An evaluation of root resorption incident to orthodontic intrusion[J]. Am J Orthod Dentofacial Orthop, 1996, 109(5):543-548. [8] Acar A, Canyürek U, Kocaaga M, et al. Continuous vs. discontinuous force application and root resorption[J]. Angle Orthod, 1999, 69(2):159-163. [9] Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats[J]. Eur J Orthod, 2003, 25(2):199-204. [10] Ciurla A, Marruganti C, Doldo T, et al. Association between polymorphisms in the IL-1β, TNFRSF11B, CASP1, and IL-6 genes and orthodontic-induced external apical root resorption[J]. J Clin Med, 2021, 10(18):4166. [11] Brudvik P, Rygh P. Multi-nucleated cells remove the main hyalinized tissue and start resorption of adjacent root surfaces[J]. Eur J Orthod, 1994, 16(4):265-273. [12] Brudvik P, Rygh P. Non-clast cells start orthodontic root resorption in the periphery of hyalinized zones[J]. Eur J Orthod, 1993, 15(6):467-480. [13] Brudvik P, Rygh P. Root resorption beneath the main hyalinized zone[J]. Eur J Orthod, 1994, 16(4):249-263. [14] Mavragani M, Amundsen OC, Selliseth NJ, et al. Early root alterations after orthodontic force application studied by light and scanning electron microscopy[J]. Eur J Orthod, 2004, 26(2):119-128. [15] Zhang J, Liu X, Wan C, et al. NLRP3 inflammasome mediates M1 macrophage polarization and IL-1β production in inflammatory root resorption[J]. J Clin Periodontol, 2020, 47(4):451-460. [16] He D, Kou X, Luo Q, et al. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption[J]. J Dent Res, 2015, 94(1):129-139. [17] Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization[J]. Eur J Pharmacol, 2020, 877:173090. [18] Davies LC, Jenkins SJ, Allen JE, et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14(10):986-995. [19] Hunter MM, Wang A, Parhar KS, et al. In vitro-derived alternatively activated macrophages reduce colonic inflammation in mice[J]. Gastroenterology, 2010, 138(4):1395-1405. [20] 韩金祥.骨分子生物学[M].科学出版社,2010. [21] Park JH, Lee NK, Lee SY. Current understanding of RANK signaling in osteoclast differentiation and maturation[J]. Mol Cells, 2017, 40(10):706-713. [22] Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt[J]. Eur J Orthod, 2006, 28(3):221-240. [23] Matsumoto Y, Sringkarnboriboon S, Ono T. Proinflammatory mediators related to orthodontically induced periapical root resorption in rat mandibular molars[J]. Eur J Orthod, 2017, 39(6):686-691. [24] Yamaguchi M, Fukasawa S. Is inflammation a friend or foe for orthodontic treatment?: Inflammation in orthodontically induced inflammatory root resorption and accelerating tooth movement[J]. Int J Mol Sci, 2021, 22(5):2388. [25] Fukushima H, Jimi E, Okamoto F, et al. IL-1-induced receptor activator of NF-kappa B ligand in human periodontal ligament cells involves ERK-dependent PGE2 production[J]. Bone, 2005, 36(2):267-275. [26] Huynh NCN, Everts V, Pavasant P, et al. Interleukin-1β induces human cementoblasts to support osteoclastogenesis[J]. Int J Oral Sci, 2017, 9(12):e5. [27] Park JY, Pillinger MH, Abramson SB. Prostaglandin E2 synthesis and secretion: the role of PGE2 synthases[J]. Clin Immunol, 2006, 119(3):229-240. [28] Offenbacher S, Heasman PA, Collins JG. Modulation of host PGE2 secretion as a determinant of periodontal disease expression[J]. J Periodontol, 1993, 64(5 Suppl):432-444. [29] Tsutsumi R, Xie C, Wei X, et al. PGE2 signaling through the EP4 receptor on fibroblasts upregulates RANKL and stimulates osteolysis[J]. J Bone Miner Res, 2009, 24(10):1753-1762. [30] Moelants EAV, Mortier A, Van Damme J, et al. Regulation of TNF-α with a focus on rheumatoid arthritis[J]. Immunol Cell Biol, 2013, 91(6):393-401. [31] Liu D, Viennois E, Fang J, et al. Toward point-of-care diagnostics to monitor MMP-9 and TNF-α levels in inflammatory bowel disease[J]. ACS Omega, 2021, 6(10):6582-6587. [32] Rossomando EF, Kennedy JE, Hadjimichael J. Tumour necrosis factor alpha in gingival crevicular fluid as a possible indicator of periodontal disease in humans[J]. Arch Oral Biol, 1990, 35(6):431-434. [33] Roberts FA, McCaffery KA, Michalek SM. Profile of cytokine mRNA expression in chronic adult periodontitis[J]. J Dent Res, 1997, 76(12):1833-1839. [34] Tani-Ishii N, Tsunoda A, Teranaka T, et al. Autocrine regulation of osteoclast formation and bone resorption by IL-1 alpha and TNF alpha[J]. J Dent Res, 1999, 78(10):1617-1623. [35] Wang YL, He H, Liu ZJ, et al. Effects of TNF-α on cementoblast differentiation, mineralization, and apoptosis[J]. J Dent Res, 2015, 94(9):1225-1232. [36] Jura-Półtorak A, Szeremeta A, Olczyk K, et al. Bone metabolism and RANKL/OPG ratio in rheumatoid arthritis women treated with TNF-α inhibitors[J]. J Clin Med, 2021, 10(13):2905. [37] Lo YJ, Liu CM, Wong MY, et al. Interleukin 1beta-secreting cells in inflamed gingival tissue of adult periodontitis patients[J]. Cytokine, 1999, 11(8):626-633. [38] Gowen M, Wood DD, Ihrie EJ, et al. An interleukin 1 like factor stimulates bone resorption in vitro[J]. Nature, 1983, 306(5941):378-380. [39] Thomson BM, Saklatvala J, Chambers TJ. Osteoblasts mediate interleukin 1 stimulation of bone resorption by rat osteoclasts[J]. J Exp Med, 1986, 164(1):104-112. [40] Jules J, Zhang P, Ashley JW, et al. Molecular basis of requirement of receptor activator of nuclear factor κB signaling for interleukin 1-mediated osteoclastogenesis[J]. J Biol Chem, 2012, 287(19):15728-15738. [41] Ueda M, Hikida T, Shimizu M, et al. Involvement of interleukins-17 and -34 in exacerbated orthodontic root resorption by jiggling force during rat experimental tooth movement[J]. J World Fed Orthod, 2020, 9(2):47-55. [42] Yago T, Nanke Y, Ichikawa N, et al. IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17[J]. J Cell Biochem, 2009, 108(4):947-955. [43] Fang XY, Zhan YX, Zhou XM, et al. CXCL12/CXCR4 mediates orthodontic root resorption via regulating the M1/M2 ratio[J]. J Dent Res, 2022, 101(5):569-579. [44] Hakami Z, Kitaura H, Kimura K, et al. Effect of interleukin-4 on orthodontic tooth movement and associated root resorption[J]. Eur J Orthod, 2015, 37(1):87-94. [45] Yoshimatsu M, Kitaura H, Fujimura Y, et al. Inhibitory effects of IL-12 on experimental tooth movement and root resorption in mice[J]. Arch Oral Biol, 2012, 57(1):36-43. [46] Rygh P. Orthodontic root resorption studied by electron microscopy[J]. Angle Orthod, 1977, 47(1):1-16. [47] Hellsing E, Hammarstrom L. The hyaline zone and associated root surface changes in experimental orthodontics in rats: a light and scanning electron microscope study[J]. Eur J Orthod, 1996, 18(1):11-18. [48] Jäger A, Kunert D, Friesen T, et al. Cellular and extracellular factors in early root resorption repair in the rat[J]. Eur J Orthod, 2008, 30(4):336-345. [49] Brudvik P, Rygh P. Transition and determinants of orthodontic root resorption-repair sequence[J]. Eur J Orthod, 1995, 17(3):177-188. [50] Brudvik P, Rygh P. The repair of orthodontic root resorption: an ultrastructural study[J]. Eur J Orthod, 1995, 17(3):189-198. [51] Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk[J]. Cytokine Growth Factor Rev, 2005, 16(3):251-263. [52] Ripamonti U, Teare J, Petit JC. Pleiotropism of bone morphogenetic proteins: from bone induction to cementogenesis and periodontal ligament regeneration[J]. J Int Acad Periodontol, 2006, 8(1):23-32. [53] Hakki SS, Foster BL, Nagatomo KJ, et al. Bone morphogenetic protein-7 enhances cementoblast function in vitro[J]. J Periodontol, 2010, 81(11):1663-1674. [54] Zhang P, Wu Y, Jiang Z, et al. Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling[J]. Int J Mol Med, 2012, 29(6):1083-1089. [55] Cao Z, Liu R, Zhang H, et al. Osterix controls cementoblast differentiation through downregulation of Wnt-signaling via enhancing DKK1 expression[J]. Int J Biol Sci, 2015, 11(3):335-344. [56] Walker CG, Ito Y, Dangaria S, et al. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model[J]. Eur J Oral Sci, 2008, 116(4):312-318. [57] Xiong J, Piemontese M, Onal M, et al. Osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling bone[J]. PLoS One, 2015, 10(9):e0138189. |