口腔医学研究 ›› 2022, Vol. 38 ›› Issue (7): 591-596.DOI: 10.13701/j.cnki.kqyxyj.2022.07.001
• 特约述评 • 下一篇
马国武*, 赵鹏程
收稿日期:
2022-05-10
出版日期:
2022-07-28
发布日期:
2022-07-22
通讯作者:
* 马国武,E-mail: mgw640242000@aliyun.com
作者简介:
马国武,博士,教授,博士生导师。现任大连医科大学口腔医学院院长,附属口腔医院院长,中华口腔医学会理事,中国医师协会口腔分会委员,中华口腔医学会种植专委会常委,辽宁省口腔医学会副会长,辽宁省百千万人才工程百人层次入选者,大连市医学会口腔分会现任主任委员,大连市领军人才,大连市优秀专家。《Journal of Hard Tissue Biology》(SCI 收录)杂志编委,《口腔医学研究》杂志副主编,《中国口腔医学年鉴》、《口腔颌面外科》、《中国实用口腔医学》等杂志编委。
基金资助:
MA Guowu*, ZHAO Pengcheng
Received:
2022-05-10
Online:
2022-07-28
Published:
2022-07-22
摘要: 唾液中包含多种生物标志物,与口腔及全身疾病的发生、发展及诊疗监控密切相关。生物标志物的检测在阿尔茨海默病(Alzheimer's disease,AD)的早期筛查和诊断中具有重要意义,唾液因其与神经系统的紧密联系有望成为AD相关生物标志物的取材库。本文对唾液中AD相关生物标志物及其检测用生物传感器进行介绍和评估,以期为AD唾液生物标志物及非侵入式生物传感器的开发和应用提供新思路。
马国武, 赵鹏程. 唾液生物标志物在阿尔茨海默病早期检测中的应用[J]. 口腔医学研究, 2022, 38(7): 591-596.
MA Guowu, ZHAO Pengcheng. Application of Saliva Biomarkers in Early Detection of Alzheimer's Disease[J]. Journal of Oral Science Research, 2022, 38(7): 591-596.
[1] Yang F, Zeng X, Ning K, et al. Saliva microbiomes distinguish caries-active from healthy human populations [J]. ISME J, 2012, 6(1): 1-10. [2] O'Brien-Simpson NM, Burgess K, Brammar GC, et al. Development and evaluation of a saliva-based chair-side diagnostic for the detection of Porphyromonas gingivalis [J]. J Oral Microbiol, 2015, 7:29129. [3] Ebersole JL, Nagarajan R, Akers D, et al. Targeted salivary biomarkers for discrimination of periodontal health and disease(s) [J]. Front Cell Infect Microbiol, 2015, 5:62. [4] Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas [J]. Sci Transl Med, 2015, 7(293):293ra104. [5] Wong DT. Salivary diagnostics [J]. J Calif Dent Assoc, 2006, 34(4):283-285. [6] Delaleu N, Mydel P, Kwee I, et al. High fidelity between saliva proteomics and the biologic state of salivary glands defines biomarker signatures for primary Sjögren's syndrome [J]. Arthritis Rheumatol, 2015, 67(4):1084-1095. [7] Javaid MA, Ahmed AS, Durand R, et al. Saliva as a diagnostic tool for oral and systemic diseases [J]. J Oral Biol Craniofac Res, 2016, 6(1) :66-75. [8] Blennow K, Zetterberg H. Biomarkers for Alzheimer's disease: current status and prospects for the future [J]. J Intern Med, 2018, 284(6): 643-663. [9] Chojnowska S, Baran T, Wilinska I, et al. Human saliva as a diagnostic material [J]. Adv Med Sci, 2018, 63(1): 185-191. [10] Reale M, Gonzales-Portillo I, Borlongan CV. Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer's disease: Present and future applications [J]. Brain Res, 2020, 1727: 146535. [11] Gleerup HS, Hasselbalch SG, Simonsen AH. Biomarkers for Alzheimer's disease in saliva: A systematic review [J]. Dis Markers, 2019, 2019: 4761054. [12] Sunderland T, Linker G, Mirza N, et al. Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease [J]. JAMA, 2003, 289(16): 2094-2103. [13] Bermejo-Pareja F, Antequera D, Vargas T, et al. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer's disease: a pilot study [J]. BMC Neurol, 2010, 10: 108. [14] Kim J, Valdes-Ramirez G, Bandodkar AJ, et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites [J]. Analyst, 2014, 139(7): 1632-1636. [15] Lau HC, Lee IK, Ko PW, et al. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor [J]. PLoS One, 2015, 10(2): e0117810. [16] Shi M, Sui YT, Peskind ER, et al. Salivary tau species are potential biomarkers of Alzheimer's disease [J]. J Alzheimers Dis, 2011, 27(2): 299-305. [17] Tvarijonaviciute A, Zamora C, Ceron JJ, et al. Salivary bio-markers in Alzheimer's disease [J]. Clin Oral Investig, 2020, 24(10): 3437-3444. [18] Lee M, Guo JP, Kennedy K, et al. A method for diagnosing Alzheimer's disease based on salivary amyloid-beta protein 42 levels [J]. J Alzheimers Dis, 2017, 55(3): 1175-1182. [19] Kim CB, Choi YY, Song WK, et al. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer's disease pathogenic factor [J]. J Biomed Opt, 2014, 19(5): 051205. [20] Hyman BT, Augustinack JC, Ingelsson M. Transcriptional and conformational changes of the tau molecule in Alzheimer's disease [J]. Biochim Biophys Acta, 2005, 1739(2-3): 150-157. [21] Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis [J]. JAMA Neurol, 2014, 71(4): 505-508. [22] Blennow K, Zetterberg H. The application of cerebrospinal fluid biomarkers in early diagnosis of Alzheimer disease [J]. Med Clin North Am, 2013, 97(3): 369-376. [23] Pekeles H, Qureshi HY, Paudel HK, et al. Development and validation of a salivary tau biomarker in Alzheimer's disease [J]. Alzheimers Dement (Amst), 2019, 11: 53-60. [24] Zotova E, Nicoll JA, Kalaria R, et al. Inflammation in Alzheimer's disease: relevance to pathogenesis and therapy [J]. Alzheimers Res Ther, 2010, 2(1): 1. [25] Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease [J]. Oral Microbiol Immunol, 2002, 17(2): 113-118. [26] Dominy SS, Lynch C, Ermini F, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors [J]. Sci Adv, 2019, 5(1): eaau3333. [27] Teixeira FB, Saito MT, Matheus FC, et al. Periodontitis and Alzheimer's disease: A possible comorbidity between oral chronic inflammatory condition and neuroinflammation [J]. Front Aging Neurosci, 2017, 9: 327. [28] Nie R, Wu Z, Ni J, et al. Porphyromonas gingivalis infection induces amyloid-beta accumulation in monocytes/macroph-ages [J]. J Alzheimers Dis, 2019, 72(2): 479-494. [29] Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer's disease [J]. Biol Psychiatry, 2010, 68(10): 930-941. [30] Buduneli N, Kinane DF. Host-derived diagnostic markers related to soft tissue destruction and bone degradation in periodontitis [J]. J Clin Periodontol, 2011, 38 Suppl 11: 85-105. [31] Rai B, Kaur J, Jacobs R, et al. Adenosine deaminase in saliva as a diagnostic marker of squamous cell carcinoma of tongue [J]. Clin Oral Investig, 2011, 15(3): 347-349. [32] Saido TC, Iwata N. Metabolism of amyloid beta peptide and pathogenesis of Alzheimer's disease. Towards presymptomatic diagnosis, prevention and therapy [J]. Neurosci Res, 2006, 54(4):235-253. [33] Sayer R, Law E, Connelly PJ, et al. Association of a salivary acetylcholinesterase with Alzheimer's disease and response to cholinesterase inhibitors [J]. Clin Biochem, 2004, 37(2):98-104. [34] Rakonczay Z, Horváth Z, Juhász A, et al. Peripheral cholinergic disturbances in Alzheimer's disease [J]. Chem Biol Interact, 2005, 157-158:233-238. [35] Zhang LJ, Xiao Y, Qi XL, et al. Cholinesterase activity and mRNA level of nicotinic acetylcholine receptors (alpha4 and beta2 Subunits) in blood of elderly Chinese diagnosed as Alzheimer's disease [J]. J Alzheimers Dis, 2010, 19(3):849-858. [36] Bakhtiari S, Moghadam NB, Ehsani M, et al. Can salivary acetylcholinesterase be a diagnostic biomarker for Alzheimer? [J]. J Clin Diagn Res, 2017, 11(1): ZC58-ZC60. [37] Morris JK, Honea RA, Vidoni ED, et al. Is Alzheimer's disease a systemic disease? [J]. Biochim Biophys Acta, 2014, 1842(9): 1340-1349. [38] Bermejo-Pareja F, Del Ser T, Valentí M, et al. Salivary lactoferrin as biomarker for Alzheimer's disease: Brain-immunity interactions [J]. Alzheimers Dement, 2020, 16(8): 1196-1204. [39] Carro E, Bartolomé F, Bermejo-Pareja F, et al. Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin [J]. Alzheimers Dement (Amst), 2017, 8: 131-138. [40] González-Sánchez M, Bartolome F, Antequera D, et al. Decreased salivary lactoferrin levels are specific to Alzheimer's disease [J]. EBioMedicine, 2020, 57: 102834. [41] Jensen M, Hartmann T, Engvall B, et al. Quantification of Alzheimer amyloid beta peptides ending at residues 40 and 42 by novel ELISA systems [J]. Mol Med, 2000, 6(4):291-302. [42] Das AP, Kumar PS, Swain S. Recent advances in biosensor based endotoxin detection [J]. Biosens Bioelectron, 2014, 51: 62-75. [43] Kim J, Campbell AS, deávila BE, et al. Wearable biosensors for healthcare monitoring [J]. Nat Biotechnol, 2019, 37(4):389-406. [44] Kang DY, Lee JH, Oh BK, et al. Ultra-sensitive immuno-sensor for β-amyloid (1-42) using scanning tunneling microscopy-based electrical detection [J]. Biosens Bioelectron, 2009, 24(5):1431-1436. [45] Lasseter TL, Cai W, Hamers RJ . Frequency-dependent ele-ctrical detection of protein binding events [J]. Analyst, 2004, 129(1):3-8. [46] Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors [J]. Nature Biotechnology, 2003, 21(10):1192-1199. [47] Wang J. Nanomaterial-based electrochemical biosensors [J]. Analyst, 2005, 130(4):421-426. [48] Liu L, Zhao F, Ma F, et al. Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ(1-16)-heme-modified gold nanoparticles [J]. Biosens Bioelectron, 2013, 49:231-235. [49] Dai Y, Molazemhosseini A, Liu CC. In vitro quantified determination of β-amyloid 42 peptides, a biomarker of neuro-degenerative disorders, in PBS and human serum using a simple, cost-effective thin gold film biosensor [J]. Biosensors (Basel), 2017, 7(3):29. [50] Esteves-Villanueva JO, Trzeciakiewicz H, Martic S. A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker [J]. Analyst, 2014, 139(11):2823-2831. [51] Wang SX, Acha D, Shah AJ, et al. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor[J]. Biosens Bioelectron, 2017, 92:482-488. [52] Torrente-Rodríguez RM, Campuzano S, Ruiz-Valdepeías Montiel V, et al. Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva [J]. Biosens Bioelectron, 2016, 77:543-548. [53] De Oliveira TR, Erbereli CR, Manzine PR, et al. Early diagnosis of Alzheimer's disease in blood using a disposable electrochemical microfluidic platform [J]. ACS Sens, 2020, 5(4): 1010-1019. [54] Zitka O, Krizkova S, Skalickova S, et al. Microfluidic tool coupled with electrochemical assay for detection of lactoferrin isolated by antibody-modified paramagnetic beads [J]. Electrophoresis, 2013, 34(14):2120-2128. [55] Xue C, Yang C, Xu T, et al. A wireless bio-sensing microfluidic chip based on resonating 'mu-divers' [J]. Lab Chip, 2015, 15(10): 2318-2326. [56] Balagadde FK, You L, Hansen CL, et al. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat [J]. Science, 2005, 309(5731): 137-140. [57] Kou S, Lee HN, Van Noort D, et al. Fluorescent molecular logic gates using microfluidic devices [J]. Angew Chem Int Ed Engl, 2008, 47(5): 872-876. [58] Ship JA, Charles D, Friedland RP, et al. Diminished submandibular salivary flow in dementia of the Alzheimer type [J]. J Gerontol, 1990, 45(2):M61-M66. [59] Niculescu AG, Chircov C, Bîrcă AC, et al. Fabrication and applications of microfluidic devices: A review [J]. Int J Mol Sci, 2021, 22(4):2011. |
[1] | 管佳妮, 严斌. 龈沟液内正畸牙移动相关生物标志物的研究进展[J]. 口腔医学研究, 2022, 38(5): 400-403. |
[2] | 骆勤亮, 黄桂林. 唾液细胞外囊泡作为生物标志物诊断口腔疾病的研究进展[J]. 口腔医学研究, 2021, 37(5): 386-388. |
[3] | 韩晓东, 陈东晖, 赵芙蓉. 不同皮瓣修复重建术对口腔颌面软组织缺损病人恢复情况及SA、sIL-2R水平的影响[J]. 口腔医学研究, 2021, 37(5): 474-478. |
[4] | 杨凯成, 杨蕾, 赵建广, 罗风玉, 陈彦平, 崔子峰, 陈赫, 满莎莎. 口腔鳞状细胞癌患者外周血microRNA的表达及预后意义[J]. 口腔医学研究, 2020, 36(5): 428-432. |
[5] | 张源, 李新月. 脂多糖抑制牙周膜细胞骨唾液酸蛋白表达中微小RNA的筛选与验证[J]. 口腔医学研究, 2020, 36(5): 477-480. |
[6] | 邹会会, 徐文光, 尹西腾, 韩伟, 江琳琳. 基于SEER数据库分析影响大唾液腺腺样囊性癌患者预后的临床病理因素[J]. 口腔医学研究, 2020, 36(2): 167-171. |
[7] | 张曙光, 王玉龙, 徐文光, 尹西腾, 韩伟, 邹会会. 基于SEER数据库的唾液腺粘液表皮样癌预后因素分析[J]. 口腔医学研究, 2020, 36(10): 915-920. |
[8] | 聂然, 周延民. 慢性牙周炎与阿尔茨海默病相关性的研究进展[J]. 口腔医学研究, 2019, 35(5): 419-422. |
[9] | 连绮思, 吴红崑. 唾液在老年人群疾病诊疗中的研究进展[J]. 口腔医学研究, 2019, 35(3): 224-226. |
[10] | 戈春城, 汪羽, 何三纲, 徐佳, 王曦, 童国勇, 余周庆. DNA损伤诱导转录子4基因在口腔鳞状细胞癌中的表达及临床意义[J]. 口腔医学研究, 2019, 35(11): 1044-1047. |
[11] | 侯雯, 苏达, 阙国鹰. 碳酸酐酶Ⅵ与4~5岁儿童龋病相关性的研究[J]. 口腔医学研究, 2018, 34(4): 363-366. |
[12] | 董子昱, 张芳. 口腔扁平苔藓唾液标记物研究现状分析[J]. 口腔医学研究, 2018, 34(11): 1168-1171. |
[13] | 刘鑫灿, 张德保, 刘仔龙. CD29的表达与人类唾液腺良恶性肿瘤发病关系的研究[J]. 口腔医学研究, 2018, 34(11): 1204-1207. |
[14] | 张孟钧, 栾庆先. 不同类型牙周炎患者唾液中8-OHdG含量的比较[J]. 口腔医学研究, 2017, 33(8): 898-900. |
[15] | 王辉, 库莉博, 徐国权, 赵志华, 马莉. 1H NMR代谢组学方法对牙周炎患者唾液代谢轮廓的分析[J]. 口腔医学研究, 2017, 33(4): 412-415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||