[1] Peramo A, Marcelo CL. Bioengineering the skin-implant interface: the use of regenerative therapies in implanted devices [J]. Ann Biomed Eng, 2010, 38(6): 2013-2031. [2] Affeld K, Grosshauser J, Goubergrits L, et al. Percutaneous devices: a review of applications, problems and possible solutions [J]. Expert Rev Med Devices, 2012, 9(4): 389-399. [3] Atsuta I, Ayukawa Y, Kondo R, et al. Soft tissue sealing around dental implants based on histological interpretation [J]. J Prosthodont Res, 2016, 60(1): 3-11. [4] Ikeda H, Shiraiwa M, Yamaza T, et al. Difference in penetration of horseradish peroxidase tracer as a foreign substance into the peri-implant or junctional epithelium of rat gingivae [J]. Clin Oral Implants Res, 2002, 13(3): 243-251. [5] Ikeda H, Yamaza T, Yoshinari M, et al. Ultrastructural and immunoelectron microscopic studies of the peri-implant epithelium-implant (Ti-6Al-4V) interface of rat maxilla [J]. J Periodontol, 2000, 71(6): 961-973. [6] Moon IS, Berglundh T, Abrahamsson I, et al. The barrier between the keratinized mucosa and the dental implant. An experimental study in the dog [J]. J Clin Periodontol, 1999, 26(10): 658-663. [7] Abdallah MN, Badran Z, Ciobanu O, et al. Strategies for optimizing the soft tissue seal around osseointegrated implants [J]. Adv Healthc Mater, 2017, 6(20). [8] Berglundh T, Gislason O, Lekholm U, et al. Histopathological observations of human periimplantitis lesions [J]. J Clin Periodontol, 2004, 31(5): 341-347. [9] Fretwurst T, Garaicoa-Pazmino C, Nelson K, et al. Characterization of macrophages infiltrating peri-implantitis lesions [J]. Clin Oral Implants Res, 2020, 31(3): 274-281. [10] Carcuac O, Berglundh T. Composition of human peri-implantitis and periodontitis lesions [J]. J Dent Res, 2014, 93(11): 1083-1088. [11] Lindhe J, Ericsson I. Effect of ligature placement and dental plaque on periodontal tissue breakdown in the dog [J]. J Periodontol, 1978, 49(7): 343-350. [12] Derks J, Schaller D, Håkansson J, et al. Peri-implantitis - onset and pattern of progression [J]. J Clin Periodontol, 2016, 43(4): 383-388. [13] Carcuac O, Abrahamsson I, Albouy JP, et al. Experimental periodontitis and peri-implantitis in dogs [J]. Clin Oral Implants Res, 2013, 24(4): 363-371. [14] Welander M, Abrahamsson I, Berglundh T. The mucosal barrier at implant abutments of different materials [J]. Clin Oral Implants Res, 2008, 19(7): 635-641. [15] Nothdurft FP, Fontana D, Ruppenthal S, et al. Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: a comparison of materials and surface topographies [J]. Clin Implant Dent Relat Res, 2015, 17(6): 1237-1249. [16] Liñares A, Grize L, Muñoz F, et al. Histological assessment of hard and soft tissues surrounding a novel ceramic implant: a pilot study in the minipig [J]. J Clin Periodontol, 2016, 43(6): 538-546. [17] Degidi M, Artese L, Scarano A, et al. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps [J]. J Periodontol, 2006, 77(1): 73-80. [18] Glauser R, Schüpbach P, Gottlow J, et al. Periimplant soft tissue barrier at experimental one-piece mini-implants with different surface topography in humans: A light-microscopic overview and histometric analysis [J]. Clin Implant Dent Relat Res, 2005, 7 Suppl 1:S44-S51. [19] Furuhashi A, Ayukawa Y, Atsuta I, et al. The difference of fibroblast behavior on titanium substrata with different surface characteristics [J]. Odontology, 2012, 100(2): 199-205. [20] Baharloo B, Textor M, Brunette DM. Substratum roughness alters the growth, area, and focal adhesions of epithelial cells, and their proximity to titanium surfaces [J]. J Biomed Mater Res A, 2005, 74(1): 12-22. [21] Puckett SD, Lee PP, Ciombor DM, et al. Nanotextured titanium surfaces for enhancing skin growth on transcutaneous osseointegrated devices [J]. Acta Biomater, 2010, 6(6): 2352-2362. [22] Smith BS, Yoriya S, Johnson T, et al. Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays [J]. Acta Biomater, 2011, 7(6): 2686-2696. [23] Chehroudi B, Gould TR, Brunette DM. A light and electron microscopic study of the effects of surface topography on the behavior of cells attached to titanium-coated percutaneous implants [J]. J Biomed Mater Res, 1991, 25(3): 387-405. [24] Abdallah MN, Abdollahi S, Laurenti M, et al. Scaffolds for epithelial tissue engineering customized in elastomeric molds [J]. J Biomed Mater Res B Appl Biomater, 2018, 106(2): 880-890. [25] Oyane A, Hyodo K, Uchida M, et al. Preliminary in vivo study of apatite and laminin-apatite composite layers on polymeric percutaneous implants [J]. J Biomed Mater Res B Appl Biomater, 2011, 97(1): 96-104. [26] Pendegrass CJ, El-Husseiny M, Blunn GW. The development of fibronectin-functionalised hydroxyapatite coatings to improve dermal fibroblast attachment in vitro [J]. J Bone Joint Surg Br, 2012, 94(4): 564-569. [27] Bates C, Marino V, Fazzalari NL, et al. Soft tissue attachment to titanium implants coated with growth factors [J]. Clin Implant Dent Relat Res, 2013, 15(1): 53-63. [28] Satué M, Gómez-Florit M, Monjo M, et al. Improved human gingival fibroblast response to titanium implants coated with ultraviolet-irradiated vitamin D precursor and vitamin E [J]. J Periodontal Res, 2016, 51(3): 342-349. [29] Pendegrass CJ, Tucker B, Patel S, et al. The effect of adherens junction components on keratinocyte adhesion in vitro: potential implications for sealing the skin-implant interface of intraosseous transcutaneous amputation prostheses [J]. J Biomed Mater Res A, 2012, 100(12): 3463-3471. [30] Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration [J]. Science (New York, NY), 1987, 237(4822): 1588-1595. [31] Sargeant TD, Rao MS, Koh CY, et al. Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers [J]. Biomaterials, 2008, 29(8): 1085-1098. [32] Chen R, Willcox MD, Ho KK, et al. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models [J]. Biomaterials, 2016, 85:142-151. [33] Gerits E, Kucharíková S, Van Dijck P, et al. Antibacterial activity of a new broad-spectrum antibiotic covalently bound to titanium surfaces [J]. J Orthop Res, 2016, 34(12): 2191-2198. [34] Córdoba A, Hierro-Oliva M, Pacha-Olivenza M, et al. Direct covalent grafting of phytate to Titanium surfaces through Ti-O-P bonding shows bone stimulating surface properties and decreased bacterial adhesion [J]. ACS Appl Mater Interfaces, 2016, 8(18): 11326-11335. [35] Hu X, Neoh KG, Shi Z, et al. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion [J]. Biomaterials, 2010, 31(34): 8854-8863. [36] Lv H, Chen Z, Yang X, et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation [J]. J Dent, 2014, 42(11): 1464-1472. [37] Zhou L, Lai Y, Huang W, et al. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility [J]. Colloids Surf B Biointerfaces, 2015, 128:552-560. [38] Zhao L, Wang H, Huo K, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles [J]. Biomaterials, 2011, 32(24): 5706-5716. [39] He S, Zhou P, Wang L, et al. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant [J]. J R Soc Interface, 2014, 11(95): 20140169. [40] Lee SJ, Heo DN, Lee HR, et al. Biofunctionalized titanium with anti-fouling resistance by grafting thermo-responsive polymer brushes for the prevention of peri-implantitis [J]. J Mater Chem B, 2015, 3(26): 5161-5165. [41] Ali K, Kay EJ. Which type of soft tissue augmentation at dental implant sites is best supported by evidence? [J]. Evid Based Dent, 2020, 21(4): 140-141. |