Journal of Oral Science Research ›› 2022, Vol. 38 ›› Issue (9): 801-806.DOI: 10.13701/j.cnki.kqyxyj.2022.09.001
MA Jianfeng*, WANG Cheng
Received:
2022-07-13
Published:
2022-09-26
MA Jianfeng, WANG Cheng. Application of Bionic Concepts in Stomatology Research[J]. Journal of Oral Science Research, 2022, 38(9): 801-806.
[1] Lu YX. Significance and progress of bionics [J]. J Bionic Eng, 2004, 1(1): 1-3. [2] Coxson GE. Biosonar inspiration for radar waveform design [J]. J Acoust Soc Am, 2019, 145(3): 1700. [3] Gemmell BJ, Dabiri JO, Colin SP, et al. Cool your jets: biological jet propulsion in marine invertebrates [J]. J Exp Biol, 2021, 224(12): jeb222083. [4] 张之南.医学发展的条件和影响——谈医学与其他学科的关系[J].医学与哲学,1985,(7):1-4+57. [5] 解启莲,胡盛寿.仿生医学——一个新的医学理论体系的创立[J].医学与哲学,2005,26(7):73-74. [6] Goharshenas Moghadam S, Parsimehr H, Ehsani A. Multifunctional superhydrophobic surfaces [J]. Adv Colloid Interface Sci, 2021, 290: 102397. [7] Xu S, Wang Q, Wang N. Chemical fabrication strategies for achieving bioinspired superhydrophobic surfaces with micro and nanostructures: A review [J]. Advanced Engineering Materials, 2021, 23(3): 2001083. [8] 麻健丰,金小婷.超疏水材料在口腔医学中的应用[J].口腔医学研究,2020,36(9):803-807. [9] Cheng Q, Cao D, Liu X, et al. Superhydrophobic coatings with self-cleaning and antibacterial adhesion properties for denture base [J]. J Mech Behav Biomed Mater, 2019, 98: 148-156. [10] Souza JGS, Bertolini M, Costa RC, et al. Targeting pathogenic biofilms: newly developed superhydrophobic coating favors a host-compatible microbial profile on the titanium surface [J]. ACS Appl Mater Interfaces, 2020, 12(9): 10118-10129. [11] Lin CW, Hsieh PY, Chou CM, et al. Femtosecond laser surface roughening and pulsed plasma polymerization duplex treatment on medical-grade stainless steel substrates for orthodontic purpose [J]. Surf Coat Technol, 2021, 427: 127819. [12] Zhao S, Yang X, Xu Y, et al. A sprayable superhydrophobic dental protectant with photo-responsive anti-bacterial, acid-resistant, and anti-fouling functions [J]. Nano Res, 2022, 15: 5245-5255. [13] Barua R, Datta S, Roychowdhury A, et al. Importance of 3D printing technology in medical fields [M]//Research anthology on emerging technologies and ethical implications in human enhancement. IGI Global, 2021: 704-717. [14] 白石柱,张生睿,钟声,等.3D打印及其在口腔医学中的应用(一)——3D打印技术的工作原理[J].实用口腔医学杂志,2022,38(1):136-140. [15] Cosyn J, De Lat L, Seyssens L, et al. The effectiveness of immediate implant placement for single tooth replacement compared to delayed implant placement: a systematic review and meta-analysis [J]. J Clin Periodontol, 2019, 46 Suppl 21: 224-241. [16] Guo F, Hu M, Wang C, et al. Studies on the performance of molar porous root-analogue implant by finite element model simulation and verification of a case report [J]. J Oral Maxillofac Surg, 2020, 78(11): 1965. e1-1965. e9. [17] Lanza A, Ruggiero A, Sbordone L. Tribology and dentistry: A commentary [J]. Lubricants, 2019, 7(6): 52. [18] 孙玉春,郭雨晴,陈虎,等.口腔精准仿生修复技术的自主创新研发与转化[J].北京大学学报(医学版),2022,54(1):7-12. [19] Li R, Wang Y, Hu M, et al. Strength and adaptation of stereolithography-fabricated zirconia dental crowns: an in vitro study [J]. Int J Prosthodont, 2019, 32(5): 439-443. [20] Li R, Chen H, Wang Y, et al. Suitability of the triple-scan method with a dental laboratory scanner to assess the 3D adaptation of zirconia crowns [J]. J Prosthet Dent, 2021, 125(4): 651-656. [21] Li R, Chen H, Wang Y, et al. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs [J]. J Mech Behav Biomed Mater, 2021, 115: 104255. [22] 牛丽娜,焦凯,方明,等.仿生修复技术在口腔颌面部硬组织缺损修复中的应用进展[J].华西口腔医学杂志,2021,39(2):129-135. [23] Zhao Q, Li G, Wang T, et al. Human periodontal ligament stem cells transplanted with nanohydroxyapatite/chitosan/gelatin 3D porous scaffolds promote jaw bone regeneration in swine [J]. Stem Cells Dev, 2021, 30(10): 548-559. [24] Sun H, Hu C, Zhou C, et al. 3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair [J]. Materials and Design, 2020, 189: 108540. [25] 黄翠,刘英衡.口腔粘接与粘固的区别和联系[J].口腔医学研究,2021,37(5):381-385. [26] Xiao Z, Zhao Q, Niu Y, et al. Adhesion advances: from nanomaterials to biomimetic adhesion and applications [J]. Soft Matter, 2022, 18(18):3447-3464. [27] Ryu JH, Choi JS, Park E, et al. Chitosan oral patches inspired by mussel adhesion [J]. J Control Release, 2020, 317: 57-66. [28] Lee SB, Gonzlez-Cabezas C, Kim KM, et al. Catechol-functionalized synthetic polymer as a dental adhesive to contaminated dentin surface for a composite restoration [J]. Biomacromolecules, 2015, 16(8): 2265-2275. [29] Lee D, Bae H, Ahn J, et al. Catechol-thiol-based dental adhesive inspired by underwater mussel adhesion [J]. Acta Biomaterialia, 2020, 103: 92-101 [30] Bilodeau EA, Lalla RV. Recurrent oral ulceration: Etiology, classification, management, and diagnostic algorithm [J]. Periodontology 2000, 2019, 80(1): 49-60. [31] Wei L, Wu S, Shi W, et al. Large-scale and rapid preparation of nanofibrous meshes and their application for drug-loaded multilayer mucoadhesive patch fabrication for mouth ulcer treatment [J]. CS Appl Mater Interfaces, 2019, 11(32): 28740-28751. [32] Mao Y, Xu Z, He Z, et al. Wet-adhesive materials of oral and maxillofacial region: From design to application [J]. Chinese Chemical Letters, 2022. [33] Xing J, Ding Y, Zheng X, et al. Barnacle-inspired robust and aesthetic janus patch with instinctive wet adhesive for oral ulcer treatment [J]. Chemical Engineering Journal, 2022: 136580. [34] Hu S, Pei X, Duan L, et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery [J]. Nat Commun, 2021, 12(1): 1689. [35] Schierz O, Baba K, Fueki K. Functional oral health-related quality of life impact: A systematic review in populations with tooth loss [J]. J Oral Rehabil, 2021, 48(3): 256-270. [36] Fan L, Guan P, Xiao C, et al. Exosome-functionalized polyetheretherketone-based implant with immunomodulatory property for enhancing osseointegration [J]. Bioact Mater, 2021, 6(9): 2754-2766. [37] Jennes ME, Naumann M, Peroz S, et al. Antibacterial effects of modified implant abutment surfaces for the prevention of peri-implantitis-A systematic review.[J]. Antibiotics (Basel), 2021, 10(11): 1350. [38] Flanagan D. Osseous remodeling around dental implants [J]. J Oral Implantol, 2019, 45(3): 239-246. [39] 蒋欣泉.仿生策略用于口腔颌面部骨再生与牙种植的研究进展[J].华西口腔医学杂志,2021,39(2):123-128 [40] Geng Z, Li Z, Cui Z, et al. Novel bionic topography with MiR-21 coating for improving bone-implant integration through regulating cell adhesion and angiogenesis [J]. Nano Lett, 2020, 20(10): 7716-7721. [41] O’Neill E, Awale G, Daneshmandi L, et al. The roles of ions on bone regeneration [J]. Drug Discov Today, 2018, 23(4): 879-890. [42] Fu X, Liu P, Zhao D, et al. Effects of nanotopography regulation and silicon doping on angiogenic and osteogenic activities of hydroxyapatite coating on titanium implant [J]. Int J Nanomedicine, 2020, 15: 4171-4189. [43] Wang Z, Zhou Z, Fan J, et al. Hydroxypropylmethylcellulose as a film and hydrogel carrier for ACP nanoprecursors to deliver biomimetic mineralization [J]. J Nanobiotechnology, 2021, 19(1): 385. [44] Li J, Yang JJ, Li J, et al. Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer [J]. Biomaterials, 2013, 34(28): 6738-6747. [45] 胡蝶,张凌琳.口腔来源蛋白及多肽诱导牙釉质仿生矿化的研究进展[J].口腔医学研究,2019,35(6):517-520. [46] 向科臻,陈亮,杨德琴.基于聚酰胺——胺树枝状聚合物的牙体硬组织仿生再矿化的研究进展[J].华西口腔医学杂志,2020,38(6):692-696. [47] Fan M, Zhang M, Xu HHK, et al. Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro [J]. Dent Mater, 2020, 36(2): 210-220. [48] Nimbeni SB, Nimbeni BS, Divakar DD. Role of chitosan in remineralization of enamel and dentin: A systematic review [J]. Int J Clin Pediatr Dent, 2021, 14(4): 562-568. [49] Muat V, Anghel EM, Zaharia A, et al. A chitosan-agarose polysaccharide-based hydrogel for biomimetic remineralization of dental enamel [J]. Biomolecules, 2021, 11(8): 1137. [50] Song J, Li T, Gao J, et al. Building an aprismatic enamel-like layer on a demineralized enamel surface by using carboxymethyl chitosan and lysozyme-encapsulated amorphous calcium phosphate nanogels [J]. J Dent, 2021, 107: 103599. |
[1] | Guo Rui, Huang Cui. Dentin Treatments Before Bonding of Noncarious Cervical Lesions [J]. Journal of Oral Science Research, 2022, 38(8): 722-724. |
[2] | GAO Li, ZHANG Hui, WANG Rui, TAO Huiqian, LIU Ling, JIANG Wenjing, WANG Mengyao, LI Linlin, YAN Bo. Demineralization and Remineralization of Deciduous Teeth in Simulated Oral Environment [J]. Journal of Oral Science Research, 2022, 38(7): 647-649. |
[3] | ZHANG Cheng, GENG Tengyu, WANG Jing, YUAN Changyong, WANG Penglai. Effects of Nano-morphologic Titanium Implant on Osteointegration in Osteoporostic Rats [J]. Journal of Oral Science Research, 2022, 38(6): 545-552. |
[4] | WEN Cai, ZHOU Huangjun, YE Sixian, FENG Hao. Preliminary Study on Changes of Fractal Dimension of Bone Trabeculae During Implant Bone Healing Period [J]. Journal of Oral Science Research, 2022, 38(4): 335-339. |
[5] | LIU Yuxiao, LIN Feifei, YU Shujuan, HUANG Xiaoyan, ZHU Guoxiong. Primary Clinical Application of 3D Printing Complete Dentures [J]. Journal of Oral Science Research, 2022, 38(3): 248-251. |
[6] | DING Jingyu, ZHU Song. Review of Cyclic Loading Effect on Dentin Bonding [J]. Journal of Oral Science Research, 2022, 38(2): 104-107. |
[7] | HU Xiaojing, LIN Lu, HUANG Zhen, ZHANG Tingting, LIU Qing, SHI Yan. Efficacy of Probiotic Aloe Vera Fermentation Gel in Treatment of Recurrent Aphthous Ulcer and Its Effect on Oral Microbiome [J]. Journal of Oral Science Research, 2022, 38(1): 85-89. |
[8] | XUE Yuan, LI Xia. An in Vitro Study of 3D Printing Technology in Positioning Calcified Root Canal Orifice of Maxillary First Molar [J]. Journal of Oral Science Research, 2021, 37(9): 814-819. |
[9] | HUANG Shuo, GUO Fang, LIU Ning, LI Yongfeng, WANG Chao, HU Min, LIU Changkui. Clinical Study on Immediate Implantation of 3D Printing Titanium Alloy Root Analogue Implant in Mandibular Molar Area [J]. Journal of Oral Science Research, 2021, 37(7): 602-606. |
[10] | ZHANG Lingbo, REN Liling. Patent Analysis on 3D Printing Technology in Stomatology [J]. Journal of Oral Science Research, 2021, 37(7): 666-670. |
[11] | WU Wenzhi, XIE Zhijian. Research Progress on Treatment of White Spot Lesions During Fixed Orthodontic Treatment [J]. Journal of Oral Science Research, 2021, 37(6): 489-492. |
[12] | HUANG Cui, LIU Yingheng. Difference and Connection between Dental Bonding and Luting [J]. Journal of Oral Science Research, 2021, 37(5): 381-385. |
[13] | GAO Xiaolan, WANG Hanming. Research Progress of Th Cell Related Cytokines in Recurrent Oral Ulcer [J]. Journal of Oral Science Research, 2021, 37(5): 397-400. |
[14] | LI Xingjia, CHEN Qixin, YUAN Changyong, WANG Penglai. Modification of Rat Model with Peri-implantitis [J]. Journal of Oral Science Research, 2021, 37(4): 314-318. |
[15] | MOU Wenbo, CHENG Yao, DONG Bo. Effect of Benzalkonium Chloride Modified Adhesive on Long-term Bond Strength of Dentin-resin [J]. Journal of Oral Science Research, 2021, 37(4): 344-348. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||