[1] He Y, Mu C, Shen X, et al. Peptide LL-37 coating on microstructured titanium implants to facilitate bone formation in vivo via mesenchymal stem cell recruitment [J]. Acta Biomaterialia, 2018, 80(10): 412. [2] Ferraris S, Cochis A, Cazzola M, et al. Cytocompatible and anti-bacterial adhesion nanotextured Titanium Oxide layer on Titanium surfaces for dental and orthopedic implants [J]. Front Bioeng Biotechnol,2019,103(7):103. [3] Azzawi ZGM, Hamad TI, Kadhim SA, et al. Osseointegration evaluation of laser-deposited titanium dioxide nanoparticles on commercially pure titanium dental implants [J]. J Mater Sci Mater Med, 2018, 29(7): 96. [4] Lin K, Xia L, Gan J, et al. Tailoring the nanostructured surfaces of hydroxyapatite bioceramics to promote protein adsorption, osteoblast growth, and osteogenic differentiation [J]. ACS Appl Mater Interfaces, 2013, 5(16): 8008-8017. [5] 杨帮成,周学东,于海洋,等.钛植入体表面改性方法[J].华西口腔医学杂志, 2019, 37(2): 124-129. [6] Dundar S, Yaman F, Bozoglan A, et al. Comparison of osseointegration of five different surfaced titanium implants [J]. J Craniofac Surg, 2018, 29(7): 1991-1995. [7] Pinotti FE, de Oliveira GJPL, Aroni MAT, et al. Analysis of osseointegration of implants with hydrophilic surfaces in grafted areas:a preclinical study [J]. Clin Oral Implants Res, 2018, 29(10): 963-972. [8] Li L, Li M, Li D, et al. Chemical functionalization of bone implants with nanoparticle-stabilized chitosan and methotrexate for inhibiting both osteoclastoma formation and bacterial infection [J]. J Mater Chem B, 2014, 2(36): 5952-5961. [9] Vahabzadeh S, Roy M, Bandyopadhyay A, et al. Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications [J]. Acta Biomater, 2015, 17: 47-55. [10] Kuwabara A, Hori N, Sawada T, et al. Enhanced biological responses of a hydroxyapatite/TiO2 hybrid structure when surface electric charge is controlled using radiofrequency sputtering [J]. Dent Mater J, 2012, 31(3): 368-376. [11] Camps-Font O,Martin-Fatas P,Cle-Ovejero A, et al. Postoperative infections after dental implant placement: Variables associated with increased risk of failure [J]. J Periodontol, 2018, 89(10) :1165-1173. [12] 蔡彦坤,郑国莹,隋磊.纯钛或钛合金种植材料表面不同纳米结构对细胞行为的影响[J].口腔医学研究,2018,34(7):699-702. [13] Andrukhov O, Huber R, Shi B, et al. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness [J]. Dent Mater, 2016, 32(11):1374-1384. [14] Garrett PW, Johnston GW, Bosshardt DD, et al. Hard and soft tissue evaluation of titanium dental implants and abutments with nanotubes in canines [J]. J Periodontol, 2020, 91(4):516-523. [15] Zhao L, Mei S, Chu PK, et al. The influence of hierarchial hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions [J]. Biomaterials, 2010, 31(19)∶5072-5082. [16] Souza JCM, Sordi MB, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration [J]. Acta Biomater, 2019, 94:112-131. [17] Liu F, Li Y, Liang J, et al. Effects of micro/nano strontium-loaded surface implants on osseointegration in ovariectomized sheep [J]. Clin Implant Dent Relat Res, 2019, 21(2):377-385. [18] Jemat A, Ghazali MJ, Razali M, et al. Surface modifications and their effects on titanium dental implants [J]. Biomed Res Int, 2015, 2015: 791725. |