
Journal of Oral Science Research ›› 2025, Vol. 41 ›› Issue (4): 269-275.DOI: 10.13701/j.cnki.kqyxyj.2025.04.001
SU Qianqian, HU Tao*
Received:2024-07-30
Published:2025-04-24
SU Qianqian, HU Tao. Research Progress on Epigenetic Modifications Regulating Regeneration of Dental Pulp Inflammation[J]. Journal of Oral Science Research, 2025, 41(4): 269-275.
| [1] Liang C, Liao L, Tian W. Stem cell-based dental pulp regeneration: Insights from signaling pathways [J]. Stem Cell Rev Rep, 2021, 17(4): 1251-1263. [2] Xie Z, Shen Z, Zhan P, et al. Functional dental pulp regeneration: Basic research and clinical translation [J]. Int J Mol Sci, 2021, 22(16):8991. [3] Moussa DG, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration [J]. J Tissue Eng Regen Med, 2019, 13(1): 58-75. [4] Cooper PR, Holder MJ, Smith AJ. Inflammation and regeneration in the dentin-pulp complex: a double-edged sword [J]. J Endod, 2014, 40(4 Suppl): S46-S51. [5] Fawzy El-Sayed KM, Elsalawy R, Ibrahim N, et al. The dental pulp stem/progenitor cells-mediated inflammatory-regenerative axis [J]. Tissue Eng Part B Rev, 2019, 25(5): 445-460. [6] Cheng Y, Song H, Ming GL, et al. Epigenetic and epitranscriptomic regulation of axon regeneration [J]. Mol Psychiatry, 2023, 28(4): 1440-1450. [7] Zhang L, Lu Q, Chang C. Epigenetics in health and disease [J]. Adv Exp Med Biol, 2020, 1253: 3-55. [8] Duncan HF, Kobayashi Y, Kearney M, et al. Epigenetic therapeutics in dental pulp treatment: Hopes, challenges and concerns for the development of next-generation biomaterials [J]. Bioact Mater, 2023, 27: 574-593. [9] Cheng Y, He C, Wang M, et al. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials [J]. Signal Transduct Target Ther, 2019, 4: 62. [10] Cai L, Zhan M, Li Q, et al. DNA methyltransferase DNMT1 inhibits lipopolysaccharide-induced inflammatory response in human dental pulp cells involving the methylation changes of IL-6 and TRAF6 [J]. Mol Med Rep, 2020, 21(2): 959-968. [11] Feng Z, Zhan M, Meng R, et al. 5-Aza-2 '-deoxycytidine enhances lipopolysaccharide-induced inflammatory cytokine expression in human dental pulp cells by regulating TRAF6 methylation [J]. Bioengineered, 2019, 10(1): 197-206. [12] Hui T, A P, Zhao Y, et al. EZH2, a potential regulator of dental pulp inflammation and regeneration [J]. J Endodont, 2014, 40(8): 1132-1138. [13] Lee JY, Mehrazarin S, Alshaikh A, et al. Histone Lys demethylase KDM3C demonstrates anti-inflammatory effects by suppressing NF-κB signaling and osteoclastogenesis [J]. FASEB J, 2019, 33(9): 10515-10527. [14] Hui T, Wang C, Chen D, et al. Epigenetic regulation in dental pulp inflammation [J]. Oral Dis, 2017, 23(1): 22-28. [15] Fahmy SH, Jungbluth H, Jepsen S, et al. Effects of histone acetyltransferase (HAT) and histone deacetylase (HDAC) inhibitors on proliferative, differentiative, and regenerative functions of Toll-like receptor 2 (TLR-2)-stimulated human dental pulp cells (hDPCs) [J]. Clin Oral Investig, 2023, 28(1):53. [16] Liu M, Chen L, Wu J, et al. Long noncoding RNA MEG3 expressed in human dental pulp regulates LPS-Induced inflammation and odontogenic differentiation in pulpitis [J]. Exp Cell Res, 2021, 400(2): 112495. [17] Muñoz-Carrillo JL, Vázquez-Alcaraz SJ, Vargas-Barbosa JM, et al. The role of microRNAs in pulp inflammation [J]. Cells, 2021, 10(8):2142. [18] Mo Z, Li Q, Cai L, et al. The effect of DNA methylation on the miRNA expression pattern in lipopolysaccharide-induced inflammatory responses in human dental pulp cells [J]. Mol Immunol, 2019, 111: 11-18. [19] Wang D, Sun S, Xue Y, et al. MicroRNA-223 negatively regulates LPS-induced inflammatory responses by targeting NLRP3 in human dental pulp fibroblasts [J]. Int Endod J, 2021, 54(2): 241-254. [20] Wang J, Du Y, Deng J, et al. MicroRNA-506 is involved in regulation of the occurrence of lipopolysaccharides (LPS)-induced pulpitis by sirtuin 1 (SIRT1) [J]. Med Sci Monit, 2019, 25: 10008-10015. [21] Ai T, Zhang J, Wang X, et al. DNA methylation profile is associated with the osteogenic potential of three distinct human odontogenic stem cells [J]. Signal Transduct Target Ther, 2018, 3:1. [22] Ye S, Xin X, Wei B, et al. Genome-wide DNA methylation profile of human dental pulp stem cells during odontogenic differentiation [J]. Arch Oral Biol, 2023, 146:105603. [23] Diomede F, Fonticoli L, Marconi GD, et al. Decellularized dental pulp, extracellular vesicles, and 5-azacytidine: A new tool for endodontic regeneration [J]. Biomedicines, 2022, 10(2):403. [24] Li Q, Yi B, Feng Z, et al. FAM20C could be targeted by TET1 to promote odontoblastic differentiation potential of human dental pulp cells [J]. Cell Prolif, 2018, 51(2): e12426. [25] Rao LJ, Yi BC, Li QM, et al. TET1 knockdown inhibits the odontogenic differentiation potential of human dental pulp cells [J]. Int J Oral Sci, 2016, 8(2): 110-116. [26] Zhou D, Gan L, Peng Y, et al. Epigenetic regulation of dental pulp stem cell fate [J]. Stem Cells Int, 2020:8876265. [27] Li QM, Li JL, Feng ZH, et al. Effect of histone demethylase KDM5A on the odontogenic differentiation of human dental pulp cells [J]. Bioengineered, 2020, 11(1): 449-462. [28] Li B, Yu F, Wu F, et al. EZH2 impairs human dental pulp cell mineralization via the Wnt/β-catenin pathway [J]. J Dent Res, 2018, 97(5): 571-579. [29] Liu Y, Gan L, Cui DX, et al. Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics [J]. World J Stem Cells, 2021, 13(11): 1647-1666. [30] Yamauchi Y, Cooper PR, Shimizu E, et al. Histone acetylation as a regenerative target in the dentine-pulp complex [J]. Front Genet, 2020, 11:1. [31] Man K, Lawlor L, Jiang LH, et al. The selective histone deacetylase inhibitor MI192 enhances the osteogenic differentiation efficacy of human dental pulp stromal cells [J]. Int J Mol Sci, 2021, 22(10):5224. [32] Zaccara IM, Mestieri LB, Pilar EFS, et al. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation [J]. Lasers Med Sci, 2020, 35(3): 741-749. [33] Cen X, Pan X, Zhang B, et al. miR-20a-5p contributes to osteogenic differentiation of human dental pulp stem cells by regulating BAMBI and activating the phosphorylation of Smad5 and p38 [J]. Stem Cell Res Ther, 2021, 12(1):421. [34] Zhu N, Wang D, Xie F, et al. MiR-335-3p/miR-155-5p involved in IGFBP7-AS1-enhanced odontogenic differentiation [J]. Int Dent J, 2023, 73(3): 362-369. [35] Ke Z, Qiu Z, Xiao T, et al. Downregulation of miR-224-5p promotes migration and proliferation in human dental pulp stem cells [J]. Biomed Res Int, 2019: 4759060. [36] Li H, Xu X, Wang D, et al. Hypermethylation-mediated downregulation of long non-coding RNA MEG3 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells and promotes pediatric aplastic anemia [J]. Int Immunopharmacol, 2021, 93: 107292. [37] Zeng L, Sun S, Han D, et al. Long non-coding RNA H19/SAHH axis epigenetically regulates odontogenic differentiation of human dental pulp stem cells [J]. Cell Signal, 2018, 52: 65-73. [38] Du Z, Shi X, Guan A. lncRNA H19 facilitates the proliferation and differentiation of human dental pulp stem cells via EZH2-dependent LATS1 methylation [J]. Mol Ther Nucleic Acids, 2021, 25: 116-126. [39] Chen Z, Zheng J, Hong H, et al. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro [J]. J Cell Physiol, 2020, 235(11): 8507-8519. [40] Peng S, Gao Y, Shi S, et al. LncRNA-AK137033 inhibits the osteogenic potential of adipose-derived stem cells in diabetic osteoporosis by regulating Wnt signaling pathway via DNA methylation [J]. Cell Prolif, 2022, 55(1): e13174. [41] Zeng L, Zhao N, Li F, et al. miR-675 promotes odontogenic differentiation of human dental pulp cells by epigenetic regulation of DLX3 [J]. Exp Cell Res, 2018, 367(1): 104-111. [42] Du Z, Shi X, Guan A. lncRNA H19 facilitates the proliferation and differentiation of human dental pulp stem cells via EZH2-dependent LATS1 methylation [J]. Mol Ther Nucleic Acids, 2021, 25: 116-126. [43] He S, Yang S, Zhang Y, et al. LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis [J]. Cell Death Dis, 2019, 10(12): 947. [44] Li Z, Guo X, Wu S. Epigenetic silencing of KLF2 by long non-coding RNA SNHG1 inhibits periodontal ligament stem cell osteogenesis differentiation [J]. Stem Cell Res Ther, 2020, 11(1): 435. [45] Jiang H, Jia P. MiR-153-3p inhibits osteogenic differentiation of periodontal ligament stem cells through KDM6A-induced demethylation of H3K27me3 [J]. J Periodontal Res, 2021, 56(2): 379-387. [46] Ma L, Wu D. MicroRNA-383-5p regulates osteogenic differentiation of human periodontal ligament stem cells by targeting histone deacetylase 9 [J]. Arch Oral Biol, 2021, 129: 105166. [47] Cakouros D, Hemming S, Gronthos K, et al. Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination [J]. Epigenetics Chromatin, 2019, 12(1): 3. [48] Liu Z, Xu S, Dao J, et al. Differential expression of lncRNA/miRNA/mRNA and their related functional networks during the osteogenic/odontogenic differentiation of dental pulp stem cells [J]. J Cell Physiol, 2020, 235(4): 3350-3361. [49] Liang C, Li W, Huang Q, et al. CircFKBP5 suppresses apoptosis and inflammation and promotes osteogenic differentiation [J]. Int Dent J, 2023, 73(3): 377-386. [50] Bao M, Liu G, Song J, et al. Long non-coding RNA MALAT1 promotes odontogenic differentiation of human dental pulp stem cells by impairing microRNA-140-5p-dependent downregulation of GIT2 [J]. Cell Tissue Res, 2020, 382(3): 487-498. [51] Wu Y, Lian K, Sun C. LncRNA LEF1-AS1 promotes osteogenic differentiation of dental pulp stem cells via sponging miR-24-3p [J]. Mol Cell Biochem, 2020, 475(1-2): 161-169. [52] Chen Y, Wang X, Wu Z, et al. Epigenetic regulation of dental-derived stem cells and their application in pulp and periodontal regeneration [J]. PeerJ, 2023, 11: e14550. [53] Cherubini A, Barilani M, Rossi RL, et al. FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition [J]. Nucleic Acids Res, 2019, 47(10): 5325-5340. [54] Ge X, Li Z, Zhou Z, et al. Circular RNA SIPA1L1 promotes osteogenesis via regulating the miR-617/Smad3 axis in dental pulp stem cells [J]. Stem Cell Res Ther, 2020, 11(1): 364. [55] Li Y, Bian M, Zhou Z, et al. Circular RNA SIPA1L1 regulates osteoblastic differentiation of stem cells from apical papilla via miR-204-5p/ALPL pathway [J]. Stem Cell Res Ther, 2020, 11(1): 461. [56] Mu X, Liu H, Yang S, et al. Chitosan tubes inoculated with dental pulp stem cells and stem cell factor enhance facial nerve-vascularized regeneration in rabbits [J]. ACS Omega, 2022, 7(22): 18509-18520. |
| [1] | HE Lijuan, PAN Taohua, WU Hao, LUO Xiaoliang. GTR for Extensive Stage Ⅲ Class C Periodontitis with Third Degree Furcation Involvement:A Case Report [J]. Journal of Oral Science Research, 2025, 41(2): 164-166. |
| [2] | SUN Yuhong, GUO Yun, FAN Mingzhe, ZENG Yu, GAO Ya, SUN Hualing, CAO Zhengguo. Periodontal-implant Restorative Multidisciplinary Treatment for Severe Periodontitis:8-year Follow Up [J]. Journal of Oral Science Research, 2025, 41(2): 170-174. |
| [3] | YAO Minhui, MA Qian. Research Progress on Antibacterial Mechanism and Bone Promoting Efficacy of Carbon Quantum Dots [J]. Journal of Oral Science Research, 2024, 40(7): 573-577. |
| [4] | WEI Yan, TIAN Ai. Research Progress on Regulation of Macrophages Involvement in Periodontal Disease by Lactate/Lactation Modification [J]. Journal of Oral Science Research, 2024, 40(7): 578-582. |
| [5] | LIU Yuehua, TIAN Yu. Research Progress on Relationship between Diabetes Mellitus and Apical Periodontitis [J]. Journal of Oral Science Research, 2024, 40(4): 283-286. |
| [6] | SUN Yifan, HONG Lihua. Advancement of Dental Stem Cells-derived Exosomes in Periodontal Tissue Regeneration [J]. Journal of Oral Science Research, 2024, 40(4): 287-292. |
| [7] | LE Manni, WANG Xiaocong, HUANG Zixuan, ZHANG Huilin, ZHANG Xiaoyue, ZHAO Qing, LI Ming, WANG Jidong. Ipriflavone Promotes Proliferation and Mineralization of Human Dental Pulp Stem Cells [J]. Journal of Oral Science Research, 2024, 40(4): 310-314. |
| [8] | PI Xiaoqin, ZHU Bin, TONG Guoyong, LI Sensen, ZHAO Guodong, ZHANG Yiting, YANG Zaibo. Clinical Study on Effect of Selenium-enriched Wheat Grass Toothpaste on Reducing Gingival Inflammation and Controlling Dental Plaque [J]. Journal of Oral Science Research, 2024, 40(3): 233-235. |
| [9] | LUO Jiaxin, HUANG Jing, WANG Yuling, FENG Yan, DANG Haixia. Effect of Soluble Epoxide Hydrolase Inhibitor on Migration and Odontogenic Differentiation of Human Dental Pulp Stem Cells Exposed to HEMA [J]. Journal of Oral Science Research, 2024, 40(2): 166-171. |
| [10] | LIU Shuo, ZHOU Meilu, XU Wenhua, PAN Taohua, LEI Rongchang. GBR for Upper Anterior Bone Fenestration with Soft Tissue Deficiency: A Case Report [J]. Journal of Oral Science Research, 2024, 40(2): 175-177. |
| [11] | ZHOU Wang, LV Weihua, WANG Xiqian, TONG Chunshi, WU Yang, PENG Liwei. Retrospective Comparative Study of Two Types of Vascularized Free Bone Transplantation for Repairing Mandibular Defects [J]. Journal of Oral Science Research, 2024, 40(12): 1059-1064. |
| [12] | GUAN Xinyue, LIU Yuhui, AN Xin, XU Bingxue, MENG Wenxin, ZHOU Ning, WU Guomin. Modified Electrospinning Three-dimensional Nanofiber Scaffold for Bone Repair [J]. Journal of Oral Science Research, 2024, 40(11): 985-991. |
| [13] | SUN Libo, LAN Yuyan, ZHANG Lei, SUN Xiaoqiang, ZHANG Chunfeng, WANG Changmi, LIANG Yunhong. Clinical Comparative Research of Forearm Dermal Fat Flap for Reconstruction of Defects in Oral and Maxillofacial Region [J]. Journal of Oral Science Research, 2024, 40(11): 1009-1012. |
| [14] | Parekejiang·PATAER, LI Chenxi, Keremu·ABASI, HU Lulu, FANG Chang, GONG Zhongcheng. Effect of Prophylactic Percutaneous Endoscopic Gastrostomy on Postoperative Infection in Oral Cancer Patients Underwent Radical Resection along with Reconstruction [J]. Journal of Oral Science Research, 2024, 40(1): 29-34. |
| [15] | ZHANG Minyi, QIN Jian, LI Shuangjiang, BU Xiaoshuang, GUO Jincai, PAN Taohua, XIE Hui. GTR and Apical Surgery for Combined Endodontic-periodontal Lesions with Severe Alveolar Bone Loss in Maxillary Molar: A Case Report [J]. Journal of Oral Science Research, 2024, 40(1): 80-82. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||