Journal of Oral Science Research ›› 2022, Vol. 38 ›› Issue (12): 1119-1123.DOI: 10.13701/j.cnki.kqyxyj.2022.12.004
Previous Articles Next Articles
LI Birong1,2, MENG Weiyan1*
Received:
2022-02-11
Online:
2022-12-28
Published:
2022-12-26
LI Birong, MENG Weiyan. Research Progress of NLRP3 Inflammasome in Peri-implantitis[J]. Journal of Oral Science Research, 2022, 38(12): 1119-1123.
[1] Belibasakis GN, Manoil D. Microbial community-driven etiopathogenesis of peri-implantitis[J]. J Dent Res, 2021, 100 (1): 21-28. [2] Kheder W, Al Kawas S, Khalaf K, et al. Impact of tribocorrosion and titanium particles release on dental implant complications-A narrative review[J]. Jpn Dent Sci Rev, 2021, 57: 182-189. [3] Montero J. A review of the major prosthetic factors influencing the prognosis of implant prosthodontics[J]. J Clin Med, 2021, 10(4):816. [4] Sahrmann P, Gilli F, Wiedemeier DB, et al. The microbiome of peri-implantitis: A systematic review and meta-analysis[J]. Microorganisms, 2020, 8(5):661. [5] Lamkanfi M, Dixit VM. Inflammasomes and their roles in health and disease[J]. Annu Rev Cell Dev Biol, 2012, 28: 137-161. [6] Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 2015, 526(7575):666-671. [7] Xue F, Shu R, Xie Y. The expression of NLRP3, NLRP1 and AIM2 in the gingival tissue of periodontitis patients: RT-PCR study and immunohistochemistry[J]. Arch Oral Biol, 2015, 60(6): 948-958. [8] Brubaker SW, Bonham KS, Zanoni I, et al.Innate immune pattern recognition: a cell biological perspective[J]. Annu Rev Immunol, 2015, 33: 257-290. [9] Lu A, Li Y, Schmidt FI, et al. Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism[J]. Nat Struct Mol Biol, 2016, 23(5): 416-425. [10] Wang L, Hauenstein AV. The NLRP3 inflammasome: Mechanism of action, role in disease and therapies[J]. Mol Aspects Med, 2020, 76: 100889. [11] Xu Z, Chen ZM, Wu X, et al. Distinct molecular mechanisms underlying potassium efflux for NLRP3 inflammasome activation[J]. Front Immunol, 2020, 11: 609441. [12] Devi S, Stehlik C, Dorfleutner A. An update on CARD only proteins (COPs) and PYD only proteins (POPs) as inflammasome regulators[J]. Int J Mol Sci, 2020, 21(18):6901. [13] Aral K, Berdeli E, Cooper PR, et al.Differential expression of inflammasome regulatory transcripts in periodontal disease[J]. J Periodontol, 2020, 91(5):606-616. [14] Zhang Z, Meszaros G, He WT, et al.Protein kinase D at the Golgi controls NLRP3 inflammasome activation[J]. J Exp Med, 2017, 214(9): 2671-2693. [15] Magupalli VG, Negro R, Tian Y, et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation[J]. Science, 2020, 369 (6510):eaas8995. [16] Albrektsson T, Jemt T, Molne J, et al. On inflammation-immunological balance theory-A critical apprehension of disease concepts around implants: Mucositis and marginal bone loss may represent normal conditions and not necessarily a state of disease[J]. Clin Implant Dent Relat Res, 2019, 21(1):183-189. [17] Ding PH, Yang MX, Wang NN, et al. Porphyromonas gingivalis-induced NLRP3 inflammasome activation and its downstream interleukin-1beta release depend on caspase-4[J]. Front Microbiol, 2020, 11: 1881. [18] Bostanci N, Meier A, Guggenheim B, et al. Regulation of NLRP3 and AIM2 inflammasome gene expression levels in gingival fibroblasts by oral biofilms[J]. Cell Immunol, 2011, 270(1): 88-93. [19] Montenegro Raudales JL, Yoshimura A, Sm Z, et al. Dental calculus stimulates interleukin-1beta secretion by activating NLRP3 inflammasome in human and mouse phagocytes[J]. PLoS One, 2016, 11(9):e0162865. [20] Ziauddin SM, Alam MI, Mae M, et al. Cytotoxic effects of dental calculus particles and freeze-dried Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum on HSC-2 oral epithelial cells and THP-1 macrophages[J]. J Periodontol, 2022, 93(6):e92-e103. [21] Yang K, Xu S, Zhao H, et al. Hypoxia and porphyromonas gingivalis-lipopolysaccharide synergistically induce NLRP3 inflammasome activation in human gingival fibroblasts[J]. Int Immunopharmacol, 2021, 94: 107456. [22] Belibasakis GN, Guggenheim B, Bostanci N. Down-regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis[J]. Innate Immun, 2013, 19(1): 3-9. [23] Okano T, Ashida H, Suzuki S, et al. Porphyromonas gingivalis triggers NLRP3-mediated inflammasome activation in macrophages in a bacterial gingipains-independent manner[J]. Eur J Immunol, 2018, 48(12): 1965-1974. [24] Morandini AC, Ramos-Junior ES, Potempa J, et al.Porphyromonas gingivalis fimbriae dampen P2X7-dependent interleukin-1beta secretion[J]. J Innate Immun, 2014, 6(6): 831-845. [25] Johnson L, Atanasova KR, Bui PQ, et al.Porphyromonas gingivalis attenuates ATP-mediated inflammasome activation and HMGB1 release through expression of a nucleoside-diphosphate kinase[J]. Microbes Infect, 2015, 17(5): 369-377. [26] Zheng S, Yu S, Fan X, et al. Porphyromonas gingivalis survival skills: Immune evasion[J]. J Periodontal Res, 2021, 56(6): 1007-1018. [27] Ando-Suguimoto ES, Benakanakere MR, Mayer MPA, et al. Distinct signaling pathways between human macrophages and primary gingival epithelial cells by aggregatibacter actinomycetemcomitans[J]. Pathogens, 2020, 9(4):248. [28] Belibasakis GN, Johansson A. Aggregatibacter actinomycetemcomitans targets NLRP3 and NLRP6 inflammasome expression in human mononuclear leukocytes[J]. Cytokine, 2012, 59(1): 124-130. [29] De Morais LS, Serra GG, Albuquerque Palermo EF, et al. Systemic levels of metallic ions released from orthodontic mini-implants[J]. Am J Orthod Dentofacial Orthop, 2009, 135(4): 522-529. [30] Li X, Tang L, Ye Myat T, et al. Titanium ions play a synergistic role in the activation of NLRP3 inflammasome in jurkat T cells[J]. Inflammation, 2020, 43(4): 1269-1278. [31] Eger M, Hiram-Bab S, Liron T, et al. Mechanism and prevention of Titanium particle-induced inflammation and osteolysis[J]. Front Immunol, 2018, 9: 2963. [32] Jamsen E, Pajarinen J, Kouri VP, et al. Tumor necrosis factor primes and metal particles activate the NLRP3 inflammasome in human primary macrophages[J]. Acta Biomater, 2020, 108:347-357. [33] Manzano GW, Fort BP, Dubyak GR, et al.Wear particle-induced priming of the NLRP3 inflammasome depends on adherent pathogen-associated molecular patterns and their cognate Toll-like receptors: An in vitro study[J]. Clin Orthop Relat Res, 2018, 476(12): 2442-2453. [34] Samelko L, Caicedo M, Mcallister K, et al.Metal-induced delayed type hypersensitivity responses potentiate particle induced osteolysis in a sex and age dependent manner[J]. PLoS One, 2021, 16(5): e0251885. [35] Samelko L, Caicedo MS, Jacobs J, et al.Transition from metal-DTH resistance to susceptibility is facilitated by NLRP3 inflammasome signaling induced Th17 reactivity: Implications for orthopedic implants[J]. PLoS One, 2019, 14(1):e0210336. [36] Arita Y, Yoshinaga Y, Kaneko T, et al. Glyburide inhibits the bone resorption induced by traumatic occlusion in rats[J]. J Periodontal Res, 2020, 55(3): 464-471. [37] Viña-Almunia J, Pellicer-Chover H, García-Mira B, et al. Influence of occlusal loading on peri-implant inflammatory cytokines in crevicular fluid: a prospective longitudinal study[J]. Int J Implant Dent, 2020, 6(1): 71. [38] Bratengeier C, Bakker AD, Fahlgren A. Mechanical loading releases osteoclastogenesis-modulating factors through stimulation of the P2X7 receptor in hematopoietic progenitor cells[J]. J Cell Physiol, 2019, 234(8): 13057-13067. [39] Sadowsky SJ. Occlusal overload with dental implants: a review[J]. Int J Implant Dent, 2019, 5(1): 29. |
[1] | WU Yuqi, HUANG Guilin. Research Progress of NLRP3 in Radiation Injury of Oral and Maxillofacial Tissues [J]. Journal of Oral Science Research, 2022, 38(9): 815-818. |
[2] | HUANG Meiyu, SHEN Yufeng, JIANG Dandan, CHEN Miaomiao, YU Chongqing, ZHOU Zheng. Correlation between Emergence Profile and Peri-implantitis of Bone Level Implants [J]. Journal of Oral Science Research, 2022, 38(11): 1042-1046. |
[3] | YANG Chunshan, XU Wei, LIU Ying, FAN Zhe, MENG Qi, YANG Chunjiang, ZHENG Jia. Long-term Clinical Effect of Implantoplasty Combined with Er:YAG Laser on Peri-implantitis [J]. Journal of Oral Science Research, 2021, 37(7): 612-616. |
[4] | LIU Mengyu. Mechanism of Interleukin-17 Regulating Matrix Metalloproteinase Expression and Inflammation in Dental Pulp [J]. Journal of Oral Science Research, 2021, 37(5): 425-430. |
[5] | HAN Xiaodong, CHEN Donghui, ZHAO Furong. Effects of Different Skin Flaps on Recovery and SA and sIL-2R Levels in Patients with Oral and Maxillofacial Soft Tissue Defects [J]. Journal of Oral Science Research, 2021, 37(5): 474-478. |
[6] | LI Xingjia, CHEN Qixin, YUAN Changyong, WANG Penglai. Modification of Rat Model with Peri-implantitis [J]. Journal of Oral Science Research, 2021, 37(4): 314-318. |
[7] | ZHANG Li, LIU Yusong, WU Yunfei, FU Qiya. Effects of Puerarin on Alveolar Bone Resorption and OPG/RANKL/RANK Pathway in Rats with Periodontitis Based on IL-23/Th17 Inflammatory Axis [J]. Journal of Oral Science Research, 2020, 36(9): 844-849. |
[8] | JIA Yongna, GOU Xiaorui, JIANG Dandan, TANG Xiaoxue, ZHOU Zheng. Clinical Efficacy and Bacteriological Analysis on Er:YAG Laser with Three Parameters in Treatment of Early Peri-implantitis [J]. Journal of Oral Science Research, 2020, 36(5): 486-489. |
[9] | HAN Yakun, YU Chengcheng, YU Yan. Change of TGF-β+ Regulatory B Cells during Periodontitis [J]. Journal of Oral Science Research, 2020, 36(2): 135-138. |
[10] | LI Yuanhui, XING Kongcai, WANG Yiting , LI Xiaohong. Effects of Luteolin on NLRP3/IL-1β Signal Pathway and Bone Remodeling in Periodontitis Rats. [J]. Journal of Oral Science Research, 2020, 36(12): 1117-1122. |
[11] | WU Peng, GAO Chengzhi. Inflammatory Gene Expression in Chronic Periodontitis and Peri-implantitis in Patients with Type 2 Diabetes [J]. Journal of Oral Science Research, 2019, 35(9): 854-857. |
[12] | HUANG Lin, FANG Wei-su, CAO Jun. Expression of Interleukin-1β and Matrix Metalloproteinase-2 in Periodontal Tissues of Rat during Root Resorption [J]. Journal of Oral Science Research, 2019, 35(6): 604-607. |
[13] | WU Pei-pei, Guzelinuer·Abudukelimu, ZHU Ya-ling, YANG Zheng-yao, Nijiati·Tuerxun.. Experimental Study of Bone Remodelling after Maizhuni was Used to Treat Peri-implantitis in Dogs. [J]. Journal of Oral Science Research, 2018, 34(9): 974-978. |
[14] | LI Na, LIN Chong-xiang, DING Xi, SHAO Xia, ZHAO Yu, TU Cheng-wei. Change of Foxp3+ Regulatory T Cells Level in Peripheral Blood of Experimental Peri-implantitis Model of Rats with Microscrew Implants [J]. Journal of Oral Science Research, 2018, 34(7): 726-729. |
[15] | LIU Chong, LI Ji-chen, SAI Yin Wu-liji, PIAO Song-lin, CAO Bo, ZHAO Da-yong. Expressions and Clinical Significances of IL-24 in Oral Squamous Cell Carcinoma [J]. Journal of Oral Science Research, 2018, 34(6): 632-635. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||