[1] Abdel-Hady Gepreel, M. and M. Niinomi, Biocompatibility of Ti-alloys for long-term implantation [J]. J Mech Behav Biomed Mater, 2013, 20(4)∶407-415 [2] Krishna, B.V., S. Bose, and A. Bandyopadhyay, Low stiffness porous Ti structures for load-bearing implants [J]. Acta Biomater, 2007, 3(6)∶997-1006 [3] Hao YL. Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications [J]. Acta Biomater, 2007, 3(2)∶277-286 [4] Bang SM. Osteoblastic and osteoclastic differentiation on SLA and hydrophilic modified SLA titanium surfaces [J]. Clin Oral Implants Res, 2014, 25(7)∶831-837 [5] Guo Y. The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young's modulus [J]. Int J Mol Med, 2013, 31(3)∶689-697 [6] 高勃.铸模温度对牙科用钛铌锆锡合金铸流率影响的研究[J].口腔医学研究,2006,22(02)∶113-115 [7] 陈学林,肖月.贮存条件对喷砂酸蚀钛种植体表面成骨细胞活性的影响[J].口腔医学研究,2016,32(2)∶168-171 [8] Qu Z, et al. The initial attachment and subsequent behavior regulation of osteoblasts by dental implant surface modification [J]. J Biomed Mater Res A, 2007, 82(3)∶658-668 [9] Truong VK, et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium [J]. Biomaterials, 2010, 31(13)∶3674-3683 [10] Yin C, et al. Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast [J]. J Biomed Mater Res A, 2017, 105(3)∶757-769 [11] Brett PM, et al. Roughness response genes in osteoblasts [J]. Bone, 2004. 35(1)∶124-133 [12] 陆斌.TiO2喷砂酸蚀处理对钛片表面人成骨细胞BMP-2表达水平的影响[J].山西医科大学学报,2013(05)∶358-360 [13] Sista S, et al. The influence of surface energy of titanium-zirconium alloy on osteoblast cell functions in vitro [J]. J Biomed Mater Res A, 2011, 97(1)∶27-36 |