[1] Retamal I, Hernández R, Velarde V, et al. Diabetes alters the involvement of myofibroblasts during periodontal wound healing [J]. Oral Dis, 2020, 26(5):1062-1071. [2] Uppal J, Trivedi H, Gupta ND, et al. Periodontal management of severe periodontitis and generalized gingival enlargement in a patient with chronic renal failure [J]. J Indian Soc Periodontol, 2020, 24(3):284-288. [3] Ahmed U, Tanwir F. Association of periodontal pathogenesis and cardiovascular diseases: a literature review [J]. Oral Health Prev Dent, 2015, 13(1):21-27. [4] Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of severe tooth loss: A systematic review and meta-analysis [J]. J Dent Res, 2014, 93(7 Suppl):20S-28S. [5] 王兴.第四次全国口腔健康流行病学调查报告[M].北京:人民卫生出版社,2018. [6] Wang F, Liu X, Yuan N, et al. Study on automatic detection and classification of breast nodule using deep convolutional neural network system [J]. J Thorac Dis, 2020, 12(9):4690-4701. [7] Togo R, Hirata K, Manabe O, et al. Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps [J]. Comput Biol Med, 2019, 104:81-86. [8] Mohan BP, Khan SR, Kassab LL, et al. Accuracy of convolutional neural network-based artificial intelligence in diagnosis of gastrointestinal lesions based on endoscopic images: A systematic review and meta-analysis [J]. Endosc Int Open, 2020, 8(11):E1584-E1594. [9] 韩生伟,韩伟.人工智能技术在口腔医学领域的应用进展[J].口腔医学研究,2020,36(6):519-522. [10] 帕克扎提·色依提,王铁梅,徐子能,等.基于深度学习在曲面体层图像中人工智能辅助诊断系统初步研究[J].口腔医学研究,2021,37(9):845-849. [11] Zhang X, Liang Y, Li W, et al. Development and evaluation of deep learning for screening dental caries from oral photographs [J]. Oral Dis, 2022, 28 (1): 173-181. [12] Warin K, Limprasert W, Suebnukarn S, et al.Automatic classification and detection of oral cancer in photographic images using deep learning algorithms [J]. J Oral Pathol Med, 2021, 50(9):911-918. [13] Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification [J]. J Clin Periodontol, 2018, 45 Suppl 20:S1-S8. [14] 于清,姜佩京,王耀国,等.基于卷积神经网络人体行为识别的院前急救措施研究[J].中华危重病急救医学,2020,32(11):1385-1387. [15] Rajkomar A, Lingam S, Taylor AG, et al. High-throughput classification of radiographs using deep convolutional neural networks [J]. J Digit Imaging, 2017, 30(1):95-101. [16] Wong SH, Al-Hasani H, Alam Z, et al.Artificial intelligence in radiology: how will we be affected? [J]. Eur Radiol, 2019, 29(1):141-143. [17] Ekert T, Krois J, Meinhold L, et al. Deep learning for the radiographic detection of apical lesions [J]. J Endod, 2019, 45(7):917-922.e5. [18] Krois J, Ekert T, Meinhold L, et al. Deep learning for the radiographic detection of periodontal bone loss [J]. Sci Rep, 2019, 9(1):8495. [19] Wu Z, Chen H, Lei Y. Recognizing non-collaborative radio station communication behaviors using an ameliorated leNet [J]. Sensors (Basel), 2020, 20(15):4320. [20] He M, Zhao X, Lu Y, et al. An improved AlexNet model for automated skeletal maturity assessment using hand X-ray images [J]. Future Generation Computer Systems, 2021, 121: 106-113. [21] Xu J, Wang S, Zhou Z, et al.Automatic CT image segmentation of maxillary sinus based on VGG network and improved V-Net [J]. Int J Comput Assist Radiol Surg, 2020, 15(9): 1457-1465. [22] Cerentini A, Welfer D, Cordeiro d'Ornellas M, et al. Automatic identification of glaucoma using deep learning methods [J]. Stud Health Technol Inform, 2017, 245:318-321. [23] Bi J. A flower classification study based on SVM and VGG16 [J]. International Core Journal of Engineering, 2021, 7(2): 368-377. [24] 柏兵.基于深度学习的宫颈病变检测方法研究[D].华侨大学,2020. |