[1] Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering [J]. Bioact Mater, 2018, 3(3):278-314. [2] Abbasi N, Hamlet S, Love RM, et al. Porous scaffolds for bone regeneration [J]. J Sci-Adv Mater Dev,2020,5(1):1-9. [3] Perez RA, Mestres G. Role of pore size and morphology in musculo-skeletal tissue regeneration [J]. Mater Sci Eng C Mater Biol Appl, 2016, 61:922-939. [4] Rustom LE, Poellmann MJ, Wagoner Johnson AJ. Mineralization in micropores of calcium phosphate scaffolds [J]. Acta Biomater, 2019, 83:435-455. [5] Ribas RG, Schatkoski VM, Montanheiro TLdA, et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review [J]. Ceram Int, 2019, 45(17):21051-21061. [6] Shen J, Yang X, Wu R, et al. Direct ink writing core-shell Wollastonite@Diopside scaffolds with tailorable shell micropores favorable for optimizing physicochemical and biodegradation properties [J]. J Eur Ceram Soc, 2020, 40(2):503-512. [7] Dellinger JG, Wojtowicz AM, Jamison RD. Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds [J]. J Biomed Mater Res A, 2006, 77(3):563-571. [8] Lan Levengood SK, Polak SJ, Wheeler MB, et al. Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration [J]. Biomaterials, 2010, 31(13):3552-3563. [9] Bohner M, Baroud G, Bernstein A, et al. Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes [J]. Mater Today, 2017, 20:106-115. [10] Zhang J, Luo X, Barbieri D, et al. The size of surface microstructures as an osteogenic factor in calcium phosphate ceramics [J]. Acta Biomater, 2014, 10(7):3254-3263. [11] Wei J, Jia J, Wu F, et al. Hierarchically microporous/macroporous scaffold of magnesium-calcium phosphate for bone tissue regeneration [J]. Biomaterials, 2010, 31(6):1260-1269. [12] Habibovic P, Yuan H, van der Valk CM, et al. 3D microenvironment as essential element for osteoinduction by biomaterials [J]. Biomaterials, 2005, 26(17):3565-3575. [13] Polak SJ, Lee JS, Murphy WL, et al. Microstructural control of modular peptide release from microporous biphasic calcium phosphate [J]. Mater Sci Eng C Mater Biol Appl, 2017, 72:268-277. [14] 傅文麒,刘慧颖.种植体表面生物活性元素的添加及其对骨免疫微环境的调控[J].口腔医学研究,2020,36(10):908-911. [15] Tang Z, Li X, Tan Y, et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics [J]. Regen Biomater, 2018, 5(1):43-59. [16] Tang H, Guo Y, Jia D, et al. High bone-like apatite-forming ability of mesoporous titania films [J]. Microporous Mesoporous Mater, 2010, 131(1-3):366-372. [17] Xin T, Mao J, Liu L, et al. Programmed sustained release of recombinant human bone morphogenetic protein-2 and inorganic ion composite hydrogel as artificial periosteum [J]. ACS Appl Mater Interfaces, 2020, 12(6):6840-6851. [18] Polak SJ, Rustom LE, Genin GM, et al. A mechanism for effective cell-seeding in rigid, microporous substrates [J]. Acta Biomater, 2013, 9(8):7977-7986. [19] Rustom LE, Boudou T, Lou S, et al. Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds [J]. Acta Biomater, 2016, 44:144-154. [20] Oh DS, Kim YJ, Hong MH, et al. Effect of capillary action on bone regeneration in micro-channeled ceramic scaffolds [J]. Ceram Int, 2014, 40(7):9583-9589. [21] Xiao D, Zhang J, Zhang C, et al. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved [J]. Acta Biomater, 2020, 106:22-33. [22] Zhang J, Barbieri D, Ten Hoopen H, et al. Microporous calcium phosphate ceramics driving osteogenesis through surface architecture [J]. J Biomed Mater Res A, 2015, 103(3):1188-1199. [23] Almas K, Smith S, Kutkut A. What is the best micro and macro dental implant topography? [J]. Dent Clin North Am, 2019, 63(3):447-460. [24] Lei L, Han J, Wen J, et al. Biphasic ceramic biomaterials with tunable spatiotemporal evolution for highly efficient alveolar bone repair [J]. J Mater Chem B, 2020,8(35):8037-8049. [25] Dang HP, Shabab T, Shafiee A, et al. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function [J]. Biofabrication, 2019, 11(3):035014. [26] Parent M, Magnaudeix A, Delebassée S, et al. Hydroxyapatite microporous bioceramics as vancomycin reservoir: Antibacterial efficiency and biocompatibility investigation [J]. J Biomater Appl, 2016, 31(4):488-498. [27] Chai F, Hornez JC, Blanchemain N, et al. Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics [J]. Biomol Eng, 2007, 24(5):510-514. [28] Zhang J, Zhou H, Yang K, et al. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration [J]. Biomaterials, 2013, 34(37):9381-9392. [29] Kakuta A, Tanaka T, Chazono M, et al. Effects of micro-porosity and local BMP-2 administration on bioresorption of β-TCP and new bone formation [J]. Biomater Res, 2019, 23(1):12. |