Journal of Oral Science Research ›› 2022, Vol. 38 ›› Issue (7): 591-596.DOI: 10.13701/j.cnki.kqyxyj.2022.07.001
MA Guowu*, ZHAO Pengcheng
Received:
2022-05-10
Online:
2022-07-28
Published:
2022-07-22
MA Guowu, ZHAO Pengcheng. Application of Saliva Biomarkers in Early Detection of Alzheimer's Disease[J]. Journal of Oral Science Research, 2022, 38(7): 591-596.
[1] Yang F, Zeng X, Ning K, et al. Saliva microbiomes distinguish caries-active from healthy human populations [J]. ISME J, 2012, 6(1): 1-10. [2] O'Brien-Simpson NM, Burgess K, Brammar GC, et al. Development and evaluation of a saliva-based chair-side diagnostic for the detection of Porphyromonas gingivalis [J]. J Oral Microbiol, 2015, 7:29129. [3] Ebersole JL, Nagarajan R, Akers D, et al. Targeted salivary biomarkers for discrimination of periodontal health and disease(s) [J]. Front Cell Infect Microbiol, 2015, 5:62. [4] Wang Y, Springer S, Mulvey CL, et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas [J]. Sci Transl Med, 2015, 7(293):293ra104. [5] Wong DT. Salivary diagnostics [J]. J Calif Dent Assoc, 2006, 34(4):283-285. [6] Delaleu N, Mydel P, Kwee I, et al. High fidelity between saliva proteomics and the biologic state of salivary glands defines biomarker signatures for primary Sjögren's syndrome [J]. Arthritis Rheumatol, 2015, 67(4):1084-1095. [7] Javaid MA, Ahmed AS, Durand R, et al. Saliva as a diagnostic tool for oral and systemic diseases [J]. J Oral Biol Craniofac Res, 2016, 6(1) :66-75. [8] Blennow K, Zetterberg H. Biomarkers for Alzheimer's disease: current status and prospects for the future [J]. J Intern Med, 2018, 284(6): 643-663. [9] Chojnowska S, Baran T, Wilinska I, et al. Human saliva as a diagnostic material [J]. Adv Med Sci, 2018, 63(1): 185-191. [10] Reale M, Gonzales-Portillo I, Borlongan CV. Saliva, an easily accessible fluid as diagnostic tool and potent stem cell source for Alzheimer's disease: Present and future applications [J]. Brain Res, 2020, 1727: 146535. [11] Gleerup HS, Hasselbalch SG, Simonsen AH. Biomarkers for Alzheimer's disease in saliva: A systematic review [J]. Dis Markers, 2019, 2019: 4761054. [12] Sunderland T, Linker G, Mirza N, et al. Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease [J]. JAMA, 2003, 289(16): 2094-2103. [13] Bermejo-Pareja F, Antequera D, Vargas T, et al. Saliva levels of Abeta1-42 as potential biomarker of Alzheimer's disease: a pilot study [J]. BMC Neurol, 2010, 10: 108. [14] Kim J, Valdes-Ramirez G, Bandodkar AJ, et al. Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites [J]. Analyst, 2014, 139(7): 1632-1636. [15] Lau HC, Lee IK, Ko PW, et al. Non-invasive screening for Alzheimer's disease by sensing salivary sugar using Drosophila cells expressing gustatory receptor (Gr5a) immobilized on an extended gate ion-sensitive field-effect transistor (EG-ISFET) biosensor [J]. PLoS One, 2015, 10(2): e0117810. [16] Shi M, Sui YT, Peskind ER, et al. Salivary tau species are potential biomarkers of Alzheimer's disease [J]. J Alzheimers Dis, 2011, 27(2): 299-305. [17] Tvarijonaviciute A, Zamora C, Ceron JJ, et al. Salivary bio-markers in Alzheimer's disease [J]. Clin Oral Investig, 2020, 24(10): 3437-3444. [18] Lee M, Guo JP, Kennedy K, et al. A method for diagnosing Alzheimer's disease based on salivary amyloid-beta protein 42 levels [J]. J Alzheimers Dis, 2017, 55(3): 1175-1182. [19] Kim CB, Choi YY, Song WK, et al. Antibody-based magnetic nanoparticle immunoassay for quantification of Alzheimer's disease pathogenic factor [J]. J Biomed Opt, 2014, 19(5): 051205. [20] Hyman BT, Augustinack JC, Ingelsson M. Transcriptional and conformational changes of the tau molecule in Alzheimer's disease [J]. Biochim Biophys Acta, 2005, 1739(2-3): 150-157. [21] Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis [J]. JAMA Neurol, 2014, 71(4): 505-508. [22] Blennow K, Zetterberg H. The application of cerebrospinal fluid biomarkers in early diagnosis of Alzheimer disease [J]. Med Clin North Am, 2013, 97(3): 369-376. [23] Pekeles H, Qureshi HY, Paudel HK, et al. Development and validation of a salivary tau biomarker in Alzheimer's disease [J]. Alzheimers Dement (Amst), 2019, 11: 53-60. [24] Zotova E, Nicoll JA, Kalaria R, et al. Inflammation in Alzheimer's disease: relevance to pathogenesis and therapy [J]. Alzheimers Res Ther, 2010, 2(1): 1. [25] Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease [J]. Oral Microbiol Immunol, 2002, 17(2): 113-118. [26] Dominy SS, Lynch C, Ermini F, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors [J]. Sci Adv, 2019, 5(1): eaau3333. [27] Teixeira FB, Saito MT, Matheus FC, et al. Periodontitis and Alzheimer's disease: A possible comorbidity between oral chronic inflammatory condition and neuroinflammation [J]. Front Aging Neurosci, 2017, 9: 327. [28] Nie R, Wu Z, Ni J, et al. Porphyromonas gingivalis infection induces amyloid-beta accumulation in monocytes/macroph-ages [J]. J Alzheimers Dis, 2019, 72(2): 479-494. [29] Swardfager W, Lanctot K, Rothenburg L, et al. A meta-analysis of cytokines in Alzheimer's disease [J]. Biol Psychiatry, 2010, 68(10): 930-941. [30] Buduneli N, Kinane DF. Host-derived diagnostic markers related to soft tissue destruction and bone degradation in periodontitis [J]. J Clin Periodontol, 2011, 38 Suppl 11: 85-105. [31] Rai B, Kaur J, Jacobs R, et al. Adenosine deaminase in saliva as a diagnostic marker of squamous cell carcinoma of tongue [J]. Clin Oral Investig, 2011, 15(3): 347-349. [32] Saido TC, Iwata N. Metabolism of amyloid beta peptide and pathogenesis of Alzheimer's disease. Towards presymptomatic diagnosis, prevention and therapy [J]. Neurosci Res, 2006, 54(4):235-253. [33] Sayer R, Law E, Connelly PJ, et al. Association of a salivary acetylcholinesterase with Alzheimer's disease and response to cholinesterase inhibitors [J]. Clin Biochem, 2004, 37(2):98-104. [34] Rakonczay Z, Horváth Z, Juhász A, et al. Peripheral cholinergic disturbances in Alzheimer's disease [J]. Chem Biol Interact, 2005, 157-158:233-238. [35] Zhang LJ, Xiao Y, Qi XL, et al. Cholinesterase activity and mRNA level of nicotinic acetylcholine receptors (alpha4 and beta2 Subunits) in blood of elderly Chinese diagnosed as Alzheimer's disease [J]. J Alzheimers Dis, 2010, 19(3):849-858. [36] Bakhtiari S, Moghadam NB, Ehsani M, et al. Can salivary acetylcholinesterase be a diagnostic biomarker for Alzheimer? [J]. J Clin Diagn Res, 2017, 11(1): ZC58-ZC60. [37] Morris JK, Honea RA, Vidoni ED, et al. Is Alzheimer's disease a systemic disease? [J]. Biochim Biophys Acta, 2014, 1842(9): 1340-1349. [38] Bermejo-Pareja F, Del Ser T, Valentí M, et al. Salivary lactoferrin as biomarker for Alzheimer's disease: Brain-immunity interactions [J]. Alzheimers Dement, 2020, 16(8): 1196-1204. [39] Carro E, Bartolomé F, Bermejo-Pareja F, et al. Early diagnosis of mild cognitive impairment and Alzheimer's disease based on salivary lactoferrin [J]. Alzheimers Dement (Amst), 2017, 8: 131-138. [40] González-Sánchez M, Bartolome F, Antequera D, et al. Decreased salivary lactoferrin levels are specific to Alzheimer's disease [J]. EBioMedicine, 2020, 57: 102834. [41] Jensen M, Hartmann T, Engvall B, et al. Quantification of Alzheimer amyloid beta peptides ending at residues 40 and 42 by novel ELISA systems [J]. Mol Med, 2000, 6(4):291-302. [42] Das AP, Kumar PS, Swain S. Recent advances in biosensor based endotoxin detection [J]. Biosens Bioelectron, 2014, 51: 62-75. [43] Kim J, Campbell AS, deávila BE, et al. Wearable biosensors for healthcare monitoring [J]. Nat Biotechnol, 2019, 37(4):389-406. [44] Kang DY, Lee JH, Oh BK, et al. Ultra-sensitive immuno-sensor for β-amyloid (1-42) using scanning tunneling microscopy-based electrical detection [J]. Biosens Bioelectron, 2009, 24(5):1431-1436. [45] Lasseter TL, Cai W, Hamers RJ . Frequency-dependent ele-ctrical detection of protein binding events [J]. Analyst, 2004, 129(1):3-8. [46] Drummond TG, Hill MG, Barton JK. Electrochemical DNA sensors [J]. Nature Biotechnology, 2003, 21(10):1192-1199. [47] Wang J. Nanomaterial-based electrochemical biosensors [J]. Analyst, 2005, 130(4):421-426. [48] Liu L, Zhao F, Ma F, et al. Electrochemical detection of β-amyloid peptides on electrode covered with N-terminus-specific antibody based on electrocatalytic O2 reduction by Aβ(1-16)-heme-modified gold nanoparticles [J]. Biosens Bioelectron, 2013, 49:231-235. [49] Dai Y, Molazemhosseini A, Liu CC. In vitro quantified determination of β-amyloid 42 peptides, a biomarker of neuro-degenerative disorders, in PBS and human serum using a simple, cost-effective thin gold film biosensor [J]. Biosensors (Basel), 2017, 7(3):29. [50] Esteves-Villanueva JO, Trzeciakiewicz H, Martic S. A protein-based electrochemical biosensor for detection of tau protein, a neurodegenerative disease biomarker [J]. Analyst, 2014, 139(11):2823-2831. [51] Wang SX, Acha D, Shah AJ, et al. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor[J]. Biosens Bioelectron, 2017, 92:482-488. [52] Torrente-Rodríguez RM, Campuzano S, Ruiz-Valdepeías Montiel V, et al. Electrochemical bioplatforms for the simultaneous determination of interleukin (IL)-8 mRNA and IL-8 protein oral cancer biomarkers in raw saliva [J]. Biosens Bioelectron, 2016, 77:543-548. [53] De Oliveira TR, Erbereli CR, Manzine PR, et al. Early diagnosis of Alzheimer's disease in blood using a disposable electrochemical microfluidic platform [J]. ACS Sens, 2020, 5(4): 1010-1019. [54] Zitka O, Krizkova S, Skalickova S, et al. Microfluidic tool coupled with electrochemical assay for detection of lactoferrin isolated by antibody-modified paramagnetic beads [J]. Electrophoresis, 2013, 34(14):2120-2128. [55] Xue C, Yang C, Xu T, et al. A wireless bio-sensing microfluidic chip based on resonating 'mu-divers' [J]. Lab Chip, 2015, 15(10): 2318-2326. [56] Balagadde FK, You L, Hansen CL, et al. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat [J]. Science, 2005, 309(5731): 137-140. [57] Kou S, Lee HN, Van Noort D, et al. Fluorescent molecular logic gates using microfluidic devices [J]. Angew Chem Int Ed Engl, 2008, 47(5): 872-876. [58] Ship JA, Charles D, Friedland RP, et al. Diminished submandibular salivary flow in dementia of the Alzheimer type [J]. J Gerontol, 1990, 45(2):M61-M66. [59] Niculescu AG, Chircov C, Bîrcă AC, et al. Fabrication and applications of microfluidic devices: A review [J]. Int J Mol Sci, 2021, 22(4):2011. |
[1] | LU Hao, XU Wanlin, WU Yifan, ZHU Yun, LIU Shengwen, Yang Wenjun. MUC1 Promotes Growth and Invasion of Salivary Adenoid Cystic Carcinoma Cells via EGFR/ERK Signaling Pathway [J]. Journal of Oral Science Research, 2022, 38(1): 24-29. |
[2] | LUO Qinliang, HUANG Guilin. Research Progress of Saliva Extracellular Vesicles as Biological Markers in Diagnosis of Oral Diseases [J]. Journal of Oral Science Research, 2021, 37(5): 386-388. |
[3] | YANG Kaicheng, YANG Lei, ZHAO Jianguang, LUO Fengyu, CHEN Yanping, CUI Zifeng, CHEN He, MAN Shasha. Expression and Prognostic Significance of microRNAs in Peripheral Blood of Patients with Oral Squamous Cell Carcinoma [J]. Journal of Oral Science Research, 2020, 36(5): 428-432. |
[4] | ZOU Huihui, XU Wenguang, YIN Xiteng, HAN Wei, JIANG Linlin. Analysis of Clinical and Pathological Factors Affecting Prognosis of Patients in Major Salivary Glands Adenoid Cystic Carcinoma Based on SEER Database [J]. Journal of Oral Science Research, 2020, 36(2): 167-171. |
[5] | ZHANG Shuguang, WANG Yulong, XU Wenguang, YIN Xiteng, HAN Wei, ZOU Huihui. Prognostic Factors of Mucoepidermoid Carcinoma of Salivary Glands: a SEER Database-based Study [J]. Journal of Oral Science Research, 2020, 36(10): 915-920. |
[6] | YANG Shuang-lin, ZHAO Wen-jie, SUN Li-bo, WU Shuang-jiang, FU Guang-xin, XIAO Jin-gang. Clinical Research on Surgical Treatment of Condylar Fractures by Retromandibular Incision from Anteroparotid Approach [J]. Journal of Oral Science Research, 2019, 35(4): 355-359. |
[7] | LIAN Qi-si, Wu Hong-kun. Research Progress of Saliva in Diagnosis of Geriatric Diseases [J]. Journal of Oral Science Research, 2019, 35(3): 224-226. |
[8] | HOU Wen, SU Da, QUE Guo-ying. Correlation between Carbonic Anhydrase Ⅵ Level and Dental Caries among Children Aged 4-5 Years. [J]. Journal of Oral Science Research, 2018, 34(4): 363-366. |
[9] | LI Kuang-zheng,JIANG Yi-xia,FAN Xiao-sheng, REN Qian, CAO Fang-yun. Expression and Significance of CD147, MMP-9, and VEGF in Salivary Gland Tumors [J]. Journal of Oral Science Research, 2018, 34(12): 1297-1301. |
[10] | DONG Zi-yu, ZHANG Fang. Analysis of Salivary Markers in Oral Lichen Planus [J]. Journal of Oral Science Research, 2018, 34(11): 1168-1171. |
[11] | LIU Xin-can,ZHANG De-bao,LIU Zai-long. Relationship between Expression of CD29 and Pathogenesis of Human Salivary Gland Benign and Malignant Tumors [J]. Journal of Oral Science Research, 2018, 34(11): 1204-1207. |
[12] | PEI Hao, XIA Dong-jing, HUANG Ying-ying. Expression of STAT6 in Salivary Gland Adenoid Cystic Carcinoma and Its Effect on Cell Proliferation and Invasion [J]. Journal of Oral Science Research, 2018, 34(11): 1212-1216. |
[13] | YANG Nan, ZHANG Rui, WANG Ru. Ectopic Salivary Gland in the Middle Region of Neck Was Misdiagnosed as Thyroglossal Cyst: A Case Report [J]. Journal of Oral Science Research, 2018, 34(1): 90-91. |
[14] | ZHANG Meng-jun, LUAN Qing-xian.. Comparison of 8-OHdG in Whole Unstimulated Saliva Obtained from Patients with Different Types of Periodontitis. [J]. Journal of Oral Science Research, 2017, 33(8): 898-900. |
[15] | WANG Hui, KU Li-bo, XU Guo-quan, ZHAO Zhi-hua, MA Li.. Analysis of Saliva Metabolic Profile of Patients with Periodontitis using 1H NMR Metabolomics Method. [J]. Journal of Oral Science Research, 2017, 33(4): 412-415. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||