Journal of Oral Science Research ›› 2022, Vol. 38 ›› Issue (11): 1014-1017.DOI: 10.13701/j.cnki.kqyxyj.2022.11.003
Previous Articles Next Articles
ZHU Siyu, LIU Huiying*
Received:
2022-02-17
Online:
2022-11-25
Published:
2022-11-22
ZHU Siyu, LIU Huiying. Research Progress of Liraglutide Regulating Bone Metabolism and Promoting Bone Regeneration[J]. Journal of Oral Science Research, 2022, 38(11): 1014-1017.
[1] Yousef CC, Thomas A, Matar MA, et al. Liraglutide effects on glycemic control and weight in patients with type 2 diabetes Me-llitus: A real-world, observational study andbrief narrative review [J]. Diabetes Res Clin Pract, 2021, 177:108871. [2] 薛莹,王雨,司方莹,等.利拉鲁肽对失重大鼠骨质疏松及骨髓间充质干细胞成骨细胞分化的影响[J].郑州大学学报,2021,56(1):16-21. [3] 朱丽利,杨德圣,朱彪,等.利拉鲁肽促进犬骨髓间充质干细胞骨向分化的体外研究[J].口腔颌面修复学杂志,2018,19(1):44-47. [4] Li Y, Fu H, Wang H, et al. GLP-1 promotes osteogenic differentiation of human AD-SCs via the Wnt/GSK-3β/β-catenin path-way [J]. Mol Cell Endocrinol, 2020, 515:110921. [5] Sun Y, Liang Y, Li Z, et al. Liraglutide promotes osteoblastic differentiation in MC3T3-E1 cells by ERK5 pathway [J]. Int J Endocrinol, 2020, 2020:8821077. [6] Hou HW, Xue P, Wang Y, et al. Liraglutide regulates proliferation, differentiation, andapoptosis of preosteoblasts through a signaling network of Notch/Wnt/Hedgehog signal-ing pathways [J]. Eur Rev Med Pharmacol Sci, 2020, 24(23):12408-12422. [7] Wu X, Li S, Xue P, et al. Liraglutide inhibits the apoptosis of MC3T3-E1 cells induced by serum deprivation through cAMP/PKA/β-catenin and PI3K/AKT/GSK3β signaling pathways[J]. Mol Cells, 2018, 41(3):234-243. [8] Pal S, Maurya SK, Chattopadhyay S, et al. The osteogenic effect of liraglutide involves enhanced mitochondrial biogenesis in osteoblasts [J]. Biochem Pharmacol, 2019, 164:34-44. [9] 杨明明,解合兰,朱慧静,等.利拉鲁肽对MC3T3-E1前成骨细胞增生分化过程中内质网应激的影响[J].中华骨质疏松和骨矿盐疾病杂志,2020,13(5): 440-445. [10] Delgado-Calle J, Bellido T. The osteocyte as a signaling cell [J]. Physiol Rev, 2022, 102(1):379-410. [11] Zhou A, Wu B, Yu H, et al. Current understanding of osteoimmunology in certain osteoimmune diseases [J]. Front Cell Dev Biol, 2021, 9:698068. [12] Yu J, Shi YC, Ping F, et al. Liraglutide inhibits osteoclastogenesis and improves bone loss by downregulating Trem2 in female type 1 diabetic mice: Findings from transcriptomics [J]. Front Endocrinol (Lausanne), 2021, 12:763646. [13] Baek CH, Kim H, Moon SY, et al. Liraglutide, a glucagon-like peptide-1 receptor agonist, induces ADAM10-dependent ectodomain shedding of RAGE via AMPK activation in human aortic endothelial cells [J]. Life Sci, 2022, 292:120331. [14] Moschovaki Filippidou F, Kirsch AH, Thelen M, et al. Glucagon-like peptide-1 receptor agonism improves nephrotoxic serum nephritis by inhibiting T-cell proliferation [J]. Am J Pathol, 2020, 190(2):400-411. [15] Navabi R, Negahdari B, Hajizadeh-Saffar E, et al. Combined therapy of mesenchymal stem cells with a GLP-1 receptor agonist, liraglutide, on an inflammatory-mediated diabetic nonhuman primate model [J]. Life Sci, 2021, 276:119374. [16] Helmstádter J, Keppeler K, Aust F, et al. GLP-1 analog liraglutide improves vascular function in polymicrobial sepsis by reduction of oxidative stress and inflammation [J]. Antioxidants (Basel), 2021, 10(8):1175. [17] Zhang YS, Zheng YD, Yuan Y, et al. Effects of anti-diabetic drugs on fracture risk: A systematic review and network meta-analysis [J]. Front Endocrinol (Lausanne), 2021, 12:735824. [18] Hygum K, Harsløf T, Jørgensen NR, et al. Bone resorption is unchanged by liraglutide in type 2 diabetes patients: A randomised controlled trial [J]. Bone, 2020, 132:115197. [19] Mieczkowska A, Millar P, Chappard D, et al. Dapagliflozin and liraglutide therapies rapidly enhanced bone material properties and matrix biomechanics at bone formation site in a type 2 diabetic mouse model [J]. Calcif Tissue Int, 2020, 107(3):281-293. [20] Sedky AA. Improvement of cognitive function, glucose and lipid homeos-tasis and serum osteocalcin levels by liraglutide in diabetic rats [J]. Fundam Clin Pharmacol, 2021, 35(6):989-1003. [21] Chen K, Wu R, Mo B, et al. Comparison between liraglutide alone and liraglutide in combination with insulin on osteoporotic rats and their effect on bone mineral density [J]. J Musculoskelet Neuronal Interact, 2021, 21(1):142-148. [22] Model JFA, Lima MV, Ohlweiler R, et al. Liraglutide improves lipid and carbohydrate metabolism of ovariectomized rats [J]. Mol Cell Endocrinol, 2021, 524:111158. [23] 裴敏钰.利拉鲁肽通过JAK2/STAT3信号通路影响糖尿病大鼠牙周炎的研究[D].兰州大学,2021. [24] Zhang Y, Yuan X, Wu Y, et al. Liraglutide regulates bone destruction and exhibits anti-inflammatory effects in periodontitis in vitro and in vivo [J]. J Dent, 2020, 94:103310. [25] Sawada N, Adachi K, Nakamura N, et al. Glucagon-like peptide-1 receptor agonist liraglutide ameliorates the development of periodontitis [J]. J Diabetes Res, 2020, 2020:8843310. [26] Mahmoud RH, Mohammed MA, Said ES, et al. Author correction: Assessment of the cardioprotective effect of liraglutide on methotrexate induced cardiac dysfunction through suppression of inflammation and enhancement of angiogenesis in rats[J]. Eur Rev Med Pharmacol Sci, 2022, 26(2):345. [27] Ji J, Feng M, Niu X, et al. Liraglutide blocks the proliferation, migration and phenotypic switching of Homocysteine (Hcy)-induced vascular smooth muscle cells (VS MCs) by suppressing proprotein convertase subtilisin kexin9 (PCSK9)/ low-density lipoprotein receptor (LDLR) [J]. Bioengineered, 2021, 12(1):8057-8066. [28] Yu M, Huang J, Zhu T, et al. Liraglutide loaded PLGA/gelatin electrospun nanofibrous mats promote angiogenesis to accelerate diabetic wound healing via the modulation of miR-29b-3p [J]. Biomater Sci, 2020, 8(15):4225-4238. [29] Meurot C, Martin C, Sudre L, et al. Lira-glutide, a glucagon-like peptide 1 receptor agonist, exerts analgesic, anti-inflammatory and anti-degradative actions in osteoarthritis [J]. Sci Rep, 2022, 12(1):1567. |
[1] | SHEN Hongyu, SONG Ke. Application and Research Progress of Biphasic Calcium Phosphate Ceramics in Dental Implant [J]. Journal of Oral Science Research, 2022, 38(5): 404-407. |
[2] | LI Chang, YIN Chengcheng. Advances in Regulation of Macrophage Behaviors by Nanomaterials for Promoting Bone Regeneration [J]. Journal of Oral Science Research, 2022, 38(11): 1010-1013. |
[3] | CHEN Yi, WU Yanmin. Research Progress of Microporous Bioceramic Scaffolds in Bone Tissue Engineering [J]. Journal of Oral Science Research, 2022, 38(1): 17-19. |
[4] | SHAN Yuhua, CHEN Zhenqi. Research Progress on Osteoimmunology Properties of β-TCP [J]. Journal of Oral Science Research, 2021, 37(9): 787-790. |
[5] | HUANG Jiaqian, MA Guowu. Bone Metabolism and Immune Regulation of Statins in Craniofacial Defects Regeneration [J]. Journal of Oral Science Research, 2021, 37(7): 592-594. |
[6] | CHENG Lu, SHI Jianjie. Application of Periosteal Releasing Technologies in Guided Bone Regeneration [J]. Journal of Oral Science Research, 2020, 36(9): 814-816. |
[7] | GUO Yudong, ZHOU Lian. Evaluation of Screw-tent Technique for Dental Implants in the Upper Anterior Region with Continuous Adjacent Teeth Missing [J]. Journal of Oral Science Research, 2020, 36(3): 298-301. |
[8] | XUE Guoping, LIU Qingmei. An Update of Low-level Laser Therapy Applied for Bone Regeneration of Jaws [J]. Journal of Oral Science Research, 2019, 35(9): 830-832. |
[9] | CHEN Rui, LI Fenglan. Effect of Aspirin/Platelet-rich Fibrin Complex on Bone Restoration of Peri-implant Bone Defects [J]. Journal of Oral Science Research, 2019, 35(8): 761-765. |
[10] | YU Wenfeng, ZHAO Shijun, LV Minmin, CUI Fenglin, KANG Meizhen, ZHANG Zhiyuan. Clinical Application of Concentrated Growth Factors in Guided Bone Regeneration of Maxillary Anterior Region [J]. Journal of Oral Science Research, 2019, 35(7): 676-680. |
[11] | GAO Xiao-meng, GAO Hai. Research Progress of Nanoparticles on Bone Tissue Engineering [J]. Journal of Oral Science Research, 2019, 35(6): 524-526. |
[12] | PENG Shuang-lin, YAO Zhi-hao, LUO Dao-wen, YANG Shuang-lin, LI Yong, XIAO Jin-gang. Experimental Study on Repair of Critical-size Calvarial Defects in Osteoporotic Rats by Biphasic Calcium Phosphate Ceramic Scaffold [J]. Journal of Oral Science Research, 2019, 35(4): 377-381. |
[13] | YU Wan-qi, YANG Shi-hui, ZHOU Zhe, ZHOU Yan-min, ZHAO Jing-hui. Clinical Study on Minimally Invasive Maxillary Sinus Elevation with Simultaneous Implantation in Elderly Patients [J]. Journal of Oral Science Research, 2019, 35(3): 258-261. |
[14] | ZHENG Jun-yuan, HE Li, HU Tu-qiang, WANG Mei-jun. Half-year Effect of Er-YAG in the Treatment of Periodontal Angular Bone Defect of Premolars in Elderly Patients: A Case Report [J]. Journal of Oral Science Research, 2019, 35(3): 307-308. |
[15] | LI Peng,ZHU Hui-cong,PAN Ting,HUANG Zhan-hong,HUANG Da-hong. Autogenous Dentin Matrix for Immediate Implantation in Periodontal Postextraction Site-A Case Report. [J]. Journal of Oral Science Research, 2019, 35(2): 197-198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||