[1] Chen L, Qu J, Cheng T, et al. Menstrual blood-derived stem cells: toward therapeutic mechanisms, novel strategies, and future perspectives in the treatment of diseases [J]. Stem Cell Res Ther, 2019, 10(1):406. [2] Yu B, Huo L, Liu Y, et al. PGC-1alpha controls skeletal stem cell fate and bone-fat balance in osteoporosis and skeletal aging by inducing TAZ [J]. Cell Stem Cell, 2018, 23(2):193-209. [3] Louvet L, Leterme D, Delplace S, et al. Sirtuin 1 deficiency decreases bone mass and increases bone marrow adiposity in a mouse model of chronic energy deficiency [J]. Bone, 2020, 136:115361. [4] El-Hattab AW, Suleiman J, Almannai M, et al. Mitochondrial dynamics: Biological roles, molecular machinery, and related diseases [J]. Mol Genet Metab, 2018, 125(4):315-321. [5] Nazarie Ignat SR, Gharbia S, Hermenean A, et al. Regenerative potential of mesenchymal stem cells' (MSCs) secretome for liver fibrosis therapies [J]. Int J Mol Sci, 2021, 22(24):13292. [6] Chen H, Fan W, He H, et al. PGC-1: a key regulator in bone homeostasis [J]. J Bone Miner Metab, 2022, 40(1):1-8. [7] Ren L, Chen X, Chen X, et al. Mitochondrial dynamics: fission and fusion in fate determination of mesenchymal stem cells [J]. Front Cell Dev Biol, 2020, 8:580070. [8] 翟启明,李蓓,王智伟,等.炎症微环境下线粒体融合蛋白2及其介导的内质网-线粒体偶联对牙周膜干细胞成骨分化能力的影响[J].中华口腔医学杂志,2018,53(7):453-458. [9] Deng L, Yi S, Yin X, et al. MFN2 knockdown promotes osteogenic differentiation of iPSC-MSCs through aerobic glycolysis mediated by the Wnt/beta-catenin signaling pathway [J]. Stem Cell Res Ther, 2022, 13(1):162. [10] Fan P, Yu XY, Xie XH, et al. Mitophagy is a protective response against oxidative damage in bone marrow mesenchymal stem cells [J]. Life Sci, 2019, 229:36-45. [11] Liu F, Yuan Y, Bai L, et al. LRRc17 controls BMSC senescence via mitophagy and inhibits the therapeutic effect of BMSCs on ovariectomy-induced bone loss [J]. Redox Biol, 2021, 43:101963. [12] Zong WX, Rabinowitz JD, White E. Mitochondria and cancer [J]. Mol Cell, 2016, 61(5):667-676. [13] Lv YJ, Yang Y, Sui BD, et al. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice [J]. Theranostics, 2018, 8(9):2387-2406. [14] Li B, Shi Y, Liu M, et al. Attenuates of NAD(+) impair BMSC osteogenesis and fracture repair through OXPHOS [J]. Stem Cell Res Ther, 2022, 13(1):77. [15] Boyette LB, Creasey OA, Guzik L, et al. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning [J]. Stem Cells Transl Med, 2014, 3(2):241-254. [16] Ejtehadifar M, Shamsasenjan K, Movassaghpour A, et al. The effect of hypoxia on mesenchymal stem cell biology [J]. Adv Pharm Bull, 2015, 5(2):141-149. [17] Yu X, Wan Q, Ye X, et al. Cellular hypoxia promotes osteogenic differentiation of mesenchymal stem cells and bone defect healing via STAT3 signaling [J]. Cell Mol Biol Lett, 2019, 24:64. [18] Ding H, Chen S, Yin JH, et al. Continuous hypoxia regulates the osteogenic potential of mesenchymal stem cells in a time-dependent manner [J]. Mol Med Rep, 2014, 10(4):2184-2190. [19] Burian E, Probst F, Palla B, et al. Effect of hypoxia on the proliferation of porcine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells in 2- and 3-dimensional culture [J]. J Craniomaxillofac Surg, 2017, 45(3):414-419. [20] O'Brien CG, Ozen MO, Ikeda G, et al. Mitochondria-rich extracellular vesicles rescue patient-specific cardiomyocytes from doxorubicin injury: Insights into the SENECA trial [J]. JACC CardioOncol, 2021, 3(3):428-440. [21] Islam MN, Das SR, Emin MT, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury [J]. Nat Med, 2012, 18(5):759-765. [22] Guo Y, Chi X, Wang Y, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing [J]. Stem Cell Res Ther, 2020, 11(1):245. [23] Xiao Y, Li X, Cui Y, et al. Hydrogen peroxide inhibits proliferation and endothelial differentiation of bone marrow stem cells partially via reactive oxygen species generation [J]. Life Sci, 2014, 112(1-2):33-40. [24] Cao L, Yang K, Yuan W, et al. Melatonin mediates osteoblast proliferation through the STIM1/ORAI1 pathway [J]. Front Pharmacol, 2022, 13:851663. [25] Fan C, Feng J, Tang C, et al. Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage [J]. Stem Cell Res Ther, 2020, 11(1):442. [26] Yan W, Diao S, Fan Z. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells [J]. Stem Cell Res Ther, 2021, 12(1):140. |