Journal of Oral Science Research ›› 2021, Vol. 37 ›› Issue (11): 961-965.DOI: 10.13701/j.cnki.kqyxyj.2021.11.001
NIU Weidong*, LIU Runyuan
Received:
2021-10-19
Online:
2021-11-28
Published:
2021-11-22
NIU Weidong, LIU Runyuan. Applications Progress of 3D Culture of Stem Cells in the Research of Dental Pulp Regeneration[J]. Journal of Oral Science Research, 2021, 37(11): 961-965.
[1] Lambrichts I, Driesen RB, Dillen Y, et al. Dental pulp stem cells: their potential in reinnervation and angiogenesis by using scaffolds [J]. J Endod, 2017, 43(9S): S12-S16. [2] Yang J, Yuan G, Chen Z. Pulp Regeneration: current approaches and future challenges [J]. Front Physiol, 2016, 7: 58. [3] McKee C, Chaudhry GR. Advances and challenges in stem cell culture [J]. Colloids Surf B Biointerfaces, 2017, 159: 62-77. [4] Petrenko Y, Syková E, Kubinová . The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids [J]. Stem Cell Res Ther, 2017, 8(1): 94. [5] Chen H, Fu H, Wu X, et al. Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a+ stem cells [J]. Sci Adv, 2020, 6(15): eaay1514. [6] 周永胜.生物材料的表面形貌与细胞的表观遗传调控[J].中华口腔医学杂志, 2017, 52(10): 594-599. [7] Carrel A. On the permanent life of tissues outside of the organism[J]. J Exp Med, 1912, 15(5): 516-528. [8] Emerman JT, Pitelka DR. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes [J]. In Vitro, 1977, 13(5): 316-328. [9] Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly [J]. Nature, 2013, 501(7467): 373-379. [10] Boutin ME, Kramer LL, Livi LL, et al. A three-dimensional neural spheroid model for capillary-like network formation [J]. J Neurosci Methods, 2018, 299: 55-63. [11] Xu B, Fan D, Zhao Y, et al. Three-dimensional culture promotes the differentiation of human dental pulp mesenchymal stem cells into insulin-producing cells for improving the diabetes therapy [J]. Front Pharmacol, 2019, 10: 1576. [12] Kothapalli CR, Kamm RD. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages [J]. Biomaterials, 2013, 34(25): 5995-6007. [13] Hu L, Gao Z, Xu J, et al. Decellularized swine dental pulp as a bioscaffold for pulp regeneration [J]. Biomed Res Int, 2017, 2017: 9342714. [14] Breslin S, O'Driscoll L. Three-dimensional cell culture: the missing link in drug discovery [J]. Drug Discov Today, 2013, 18(5-6): 240-249. [15] Li Y, Guo G, Li L, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance [J]. Cell Tissue Res, 2015, 360(2): 297-307. [16] Murata D, Tokunaga S, Tamura T, et al. A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells [J]. J Orthop Surg Res, 2015, 10(4): 35. [17] Imamura A, Kajiya H, Fujisaki S, et al. Three-dimensional spheroids of mesenchymal stem/stromal cells promote osteogenesis by activating stemness and Wnt/β-catenin [J]. Biochem Biophys Res Commun, 2020, 523(2): 458-464. [18] Kim YH, Choi SH, D'Avanzo C, et al. A 3D human neural cell culture system for modeling Alzheimer's disease [J]. Nat Protoc, 2015, 10(7): 985-1006. [19] Ma L, Zhang B, Zhou C, et al. The comparison genomics analysis with glioblastoma multiforme (GBM) cells under 3D and 2D cell culture conditions [J]. Colloids Surf B Biointerfaces, 2018, 172(12): 665-673. [20] Osaki T, Sivathanu V, Kamm RD. Engineered 3D vascular and neuronal networks in a microfluidic platform [J]. Sci Rep, 2018, 8(1): 5168. [21] Wragg NM, Mosqueira D, Blokpeol-Ferreras L, et al. Development of a 3D tissue-engineered skeletal muscle and bone co-culture system [J]. Biotechnol J, 2020, 15(1): e1900106. [22] Saheli M, Sepantafar M, Pournasr B, et al. Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function [J]. J Cell Biochem, 2018, 119(6): 4320-4333. [23] Sui B, Chen C, Kou X, et al. Pulp stem cell-mediated functional pulp regeneration [J]. J Dent Res, 2019, 98(1): 27-35. [24] Rombouts C, Giraud T, Jeanneau C, et al. Pulp vascularization during tooth development, regeneration, and therapy [J]. J Dent Res, 2017, 96(2): 137-144. [25] Choi SH, Kim YH, Quinti L, et al. 3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish" [J]. Mol Neurodegener, 2016, 11(1): 75. [26] Liang C, Liao L, Tian W. Stem cell-based dental pulp regeneration: insights from signaling pathways [J]. Stem Cell Rev Rep, 2021, 17(4): 1251-1263. [27] Lee SH, Inaba A, Mohindroo N, et al. Three-dimensional sphere-forming cells are unique multipotent cell population in dental pulp cells [J]. J Endod, 2017, 43(8): 1302-1308. [28] Zhang SY, Buttler-Buecher P, Denecke B, et al. A comprehensive analysis of human dental pulp cell spheroids in a three-dimensional pellet culture system [J]. Arch Oral Biol, 2018, 91(7): 1-8. [29] Zhang Y, Liu J, Zou T, et al. DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling [J]. Stem Cell Res Ther, 2021, 12(1): 281. [30] Itoh Y, Sasaki JI, Hashimoto M, et al. Pulp regeneration by 3-dimensional dental pulp stem cell constructs [J]. J Dent Res, 2018, 97(10): 1137-1143. [31] Yang T, Zhang Q, Xie L, et al. hDPSC-laden GelMA microspheres fabricated using electrostatic microdroplet method for endodontic regeneration [J]. Mater Sci Eng C Mater Biol Appl, 2021, 121(2): 111850. [32] Zhang R, Xie L, Wu H, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration [J]. Acta Biomater, 2020, 113(9): 305-316. [33] Bu NU, Lee HS, Lee BN, et al. In vitro characterization of dental pulp stem cells cultured in two microsphere-forming culture plates [J]. J Clin Med, 2020, 9(1): 242. [34] Son YB, Bharti D, Kim SB, et al. Comparison of pluripotency, differentiation, and mitochondrial metabolism capacity in three-dimensional spheroid formation of dental pulp-derived mesenchymal stem cells [J]. Biomed Res Int, 2021, 2021: 5540877. [35] Chan YH, Lee YC, Hung CY, et al. Three-dimensional spheroid culture enhances multipotent differentiation and stemness capacities of human dental pulp-derived mesenchymal stem cells by modulating MAPK and NF-κB signaling pathways [J]. Stem Cell Rev Rep, 2021, 17(5):1810-1826. [36] Yang G, Jiang F, Lu Y, et al. Rapid construction and enhanced vascularization of microtissue using a magnetic control method [J]. Biofabrication, 2021, 13(3): 035040. [37] Salgado CL, Barrias CC, Monteiro FJM. Clarifying the tooth-derived stem cells behavior in a 3D biomimetic scaffold for bone tissue engineering applications [J]. Front Bioeng Biotechnol, 2020, 8: 724. |
[1] | ZHOU Xuechun, SUN Xinhua. Research Progress of Secretion in Mesenchymal Stem Cell-derived Conditioned Medium with Periodontal Regeneration [J]. Journal of Oral Science Research, 2021, 37(7): 595-597. |
[2] | HU Yuping, YANG Xue, YAN Zhihao, XING Huiyan, LU Jin, LI Shufang. Radiographic Study of PRF Combined with MTA for Direct Pulp Capping of Rabbit Teeth [J]. Journal of Oral Science Research, 2021, 37(7): 656-660. |
[3] | LIU Mengyu. Mechanism of Interleukin-17 Regulating Matrix Metalloproteinase Expression and Inflammation in Dental Pulp [J]. Journal of Oral Science Research, 2021, 37(5): 425-430. |
[4] | DONG Jiayi, ZHAO Jiangdong, ZHAO Wanmin, LIU Wenjia, LI Dehua. Role of ALPL in Regulating Tube Formation of Endothelia Cells by Exosomes from BMMSCs [J]. Journal of Oral Science Research, 2021, 37(5): 462-467. |
[5] | ZHU Yongcui, ZHAI Lei, YAN Yazi, LI Yaru. Effect of Overexpression of ADAM10 on Osteogenic Differentiation of Periodontal Ligament Stem Cells by Regulating Notch Signaling Pathway [J]. Journal of Oral Science Research, 2021, 37(5): 468-473. |
[6] | NIU Yumei, SUN Xiangyu. Research Progress and Application Prospect of Dental Pulp Stem Cells in Repairing Facial Nerve Injury [J]. Journal of Oral Science Research, 2021, 37(3): 185-190. |
[7] | YANG Jinghui, YUAN Guohua. Introduction and Assessment of Dental Pulp Vitality Test [J]. Journal of Oral Science Research, 2021, 37(3): 195-199. |
[8] | YANG Xin, FAN Yawei. Research on Computer Aided Design of Personalized Pulp Opening Guide Template [J]. Journal of Oral Science Research, 2021, 37(3): 222-226. |
[9] | ZHAO Yun, MI Fanglin. Research Progress on Regulation and Mechanism of microRNA on Dental Pulp Stem Cell Differentiation [J]. Journal of Oral Science Research, 2021, 37(2): 113-117. |
[10] | NIE Zhangling, BAO Chongyun. Research Progress on Mechanism of Macrophages Affecting Bone Formation [J]. Journal of Oral Science Research, 2021, 37(11): 966-969. |
[11] | ZHANG Kun, LIU Yali. Advancement in Epigenetics of Periodontal Ligament Stem Cells [J]. Journal of Oral Science Research, 2021, 37(11): 976-980. |
[12] | MAI Lijia, YUAN Guohua. Comparison of Biodentine and MTA as Pulpotomy Agents for Primary Teeth [J]. Journal of Oral Science Research, 2021, 37(1): 19-22. |
[13] | GUAN Mengying, HE Lina, PAN Shuang, LI Yanping, LIU Huimei, NIU Yumei. Effects of Canonical Wnt Signaling Pathway on Proliferation, Migration, and Odontogenic Differentiation of hDPSCs [J]. Journal of Oral Science Research, 2020, 36(9): 861-865. |
[14] | QIU Yinfeng, TANG Ying, SHEN Yifen, LIU Chao, SHEN Hao, GU Yongchun, YU Jinhua. Effects of Fluoride Exposure on Cell Proliferation and Osteogenic Differentiation of Periodontal Ligament Stem Cells [J]. Journal of Oral Science Research, 2020, 36(9): 866-870. |
[15] | LIU Xuejun, XU Jiamin. Clinical and Radiological Evaluation of Pulp Revascularization for Immature Permanent Teeth with Apical Periodontitis [J]. Journal of Oral Science Research, 2020, 36(7): 630-634. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||