Journal of Oral Science Research ›› 2023, Vol. 39 ›› Issue (3): 227-235.DOI: 10.13701/j.cnki.kqyxyj.2023.03.009
Previous Articles Next Articles
XU Jing1, LV Huixin1, WANG Yihan1, BAO Xin2, ZHANG Yi1, ZHOU Yanmin1*
Received:
2022-10-27
Online:
2023-03-28
Published:
2023-03-21
XU Jing, LV Huixin, WANG Yihan, BAO Xin, ZHANG Yi, ZHOU Yanmin. Nell-1 Regulates Osteogenic Differentiation of Human Maxillary Sinus Membrane-derived Mesenchymal Stem Cells through Wnt/β-catenin Pathway[J]. Journal of Oral Science Research, 2023, 39(3): 227-235.
[1] Pistilli R, Canullo L, Pesce P, et al. Guided implant surgery and sinus lift in severely resorbed maxillae: A retrospective clinical study with up to 10 years of follow-up [J]. J Dent, 2022, 121: 104137. [2] Yan M, Liu R, Bai S, et al. Transalveolar sinus floor lift without bone grafting in atrophic maxilla: A meta-analysis [J]. Sci Rep, 2018, 8(1):1451. [3] Rammelsberg P, Pahle J, Büsch C, et al. Long-term apical bone gain after implant placement combined with internal sinus-floor elevation without graft [J]. BMC Oral Health, 2020, 20(1):197. [4] Shi JY, Qian SJ, Gu YX, et al. Long-term outcomes of osteotome sinus floor elevation without grafting in severely atrophic maxilla: A 10-year prospective study [J]. J Clin Periodontol, 2020, 47(12): 1528-1535. [5] Duan DH, Fu JH, Qi W, et al. Graft-free maxillary sinus floor elevation: A systematic review and meta-analysis [J]. J Periodontol, 2017, 88(6): 550-564. [6] Berbéri A, Sabbagh J, Bou Assaf R, et al. Comparing the osteogenic potential of schneiderian membrane and dental pulp mesenchymal stem cells: an in vitro study [J]. Cell Tissue Bank, 2021, 22(3): 409-417. [7] Assaf RB, Zibara K, Fayyad-Kazan M, et al. Healing of bone defects in pig's femur using mesenchymal cells originated from the sinus membrane with different scaffolds [J]. Stem Cells Int, 2019, 2019: 4185942. [8] Weng Y, Wang H, Wu D, et al. A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL [J]. Cell Res, 2022, 32(9): 814-830. [9] Guo JB, Weng JQ, Rong Q, et al. Investigation of multipotent postnatal stem cells from human maxillary sinus membrane [J]. Sci Rep, 2015, 5:11660. [10] Berbéri A, Al-Nemer F, Hamade E, et al. Mesenchymal stem cells with osteogenic potential in human maxillary sinus membrane: an in vitro study [J]. Clin Oral Investig, 2017, 21(5): 1599-1609. [11] Gruber R, Kandler B, Fuerst G, et al. Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro [J]. Clin Oral Implants Res, 2004, 15(5): 575-580. [12] Li C, Zhang X, Zheng Z, et al. Nell-1 is a key functional modulator in osteochondrogenesis and beyond [J]. J Dent Res, 2019, 98(13):1458-1468. [13] Zeng L, He H, Sun M, et al. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption [J]. Stem Cell Res Ther, 2022, 13(1):486. [14] Chen X, Wang H, Yu M, et al. Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus [J]. Cell Death Differ, 2020, 27(4): 1415-1430. [15] Dobson LK, Zeitouni S, McNeill EP, et al. Canine mesenchymal stromal cell-mediated bone regeneration is enhanced in the presence of sub-therapeutic concentrations of bmp-2 in a murine calvarial defect model [J]. Front Bioeng Biotechnol, 2021, 9:764703. [16] Song D, Huang S, Zhang L, et al. Differential responsiveness to BMP9 between patent and fused suture progenitor cells from craniosynostosis patients [J]. Plast Reconstr Surg, 2020, 145(3): 552-562. [17] Xia K, Cen X, Yu L, et al. Long noncoding RNA expression profiles during the NEL-like 1 protein-induced osteogenic differentiation [J]. J Cell Physiol, 2020, 235(9): 6010-6022. [18] James AW, Shen J, Tsuei R, et al. NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair [J]. JCI Insight, 2017, 2(12):e92573. [19] Yu L, Cen X, Xia K, et al. microRNA expression profiles and the potential competing endogenous RNA networks in NELL-1-induced human adipose-derived stem cell osteogenic differentiation [J]. J Cell Biochem, 2020, 121(11): 4623-4641. [20] Song Y, Pan Y, Wu M, et al. METTL3-mediated lncRNA m6A modification in the osteogenic differentiation of human adipose-derived stem cells induced by NEL-like 1 protein [J]. Stem Cell Rev Rep, 2021, 17(6): 2276-2290. [21] Li M, Wang Q, Han Q, et al. Novel molecule nell-1 promotes the angiogenic differentiation of dental pulp stem cells [J]. Front Physiol, 2021, 12:703593. [22] An HJ, Ko KR, Baek M, et al. Pro-angiogenic and osteogenic effects of adipose tissue-derived pericytes synergistically enhanced by Nel-like protein-1 [J]. Cells, 2021, 10(9): 2244. [23] Wu J, Wang Q, Han Q, et al. Effects of Nel-like molecule-1 and bone morphogenetic protein 2 combination on rat pulp repair [J]. J Mol Histol, 2019, 50(3): 253-261. [24] Li C, Zheng Z, Jiang J, et al. Neural egfl-like 1 regulates cartilage maturation through runt-related transcription factor 3-mediated indian hedgehog signaling [J]. Am J Pathol, 2018, 188(2): 392-403. [25] Li C, Zheng Z, Zhang X, et al. Nfatc1 is a functional transcriptional factor mediating Nell-1-induced Runx3 upregulation in chondrocytes [J]. Int J Mol Sci, 2018, 19(1): 168. [26] Karner CM, Long F. Wnt signaling and cellular metabolism in osteoblasts [J]. Cell Mol Life Sci, 2017, 74(9): 1649-1657. [27] Zhu M, Fan Z. The role of the Wnt signalling pathway in the energy metabolism of bone remodelling [J]. Cell Prolif, 2022, 55(11): e13309. [28] Shen J, James AW, Zhang X, et al. Novel Wnt regulator NEL-like molecule-1 antagonizes adipogenesis and augments osteogenesis induced by bone morphogenetic protein 2 [J]. Am J Pathol, 2016, 186(2): 419-434. [29] James AW, Shen J, Zhang X, et al. NELL-1 in the treatment of osteoporotic bone loss [J]. Nat Commun, 2015, 6: 7362. [30] Jiang H, Zhang Z, Yu Y, et al. Drug discovery of DKK1 inhibitors [J]. Front Pharmacol, 2022, 13: 1-17. [31] Nelson AL, Fontana GL, Miclau E, et al. Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration [J]. J Tissue Eng Regen Med, 2022, 16(11): 961-967. |
[1] | ZENG Tingwen, ZHAO Yingqiong, ZHANG Jingyang. Short-term Clinical Application of Dentin Slices in Horizontal Bone Augmentation [J]. Journal of Oral Science Research, 2023, 39(2): 151-155. |
[2] | LI Chen, GAN Xueqi. Research Advances in Relationship between Mitochondria and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells [J]. Journal of Oral Science Research, 2023, 39(1): 11-14. |
[3] | WANG Xiaodong, MENG Lingjiao, ZHAO Bing, CHEN Zhifang. Anatomical Presentation of Maxillary First Molar Site in Cone-beam CT [J]. Journal of Oral Science Research, 2022, 38(8): 784-788. |
[4] | XU Zejun, MAN Cheng. Research Progress of Mesenchymal Stem Cell-derived Exosomes in Temporomandibular Joint Osteoarthritis [J]. Journal of Oral Science Research, 2022, 38(6): 509-512. |
[5] | SHEN Hongyu, SONG Ke. Application and Research Progress of Biphasic Calcium Phosphate Ceramics in Dental Implant [J]. Journal of Oral Science Research, 2022, 38(5): 404-407. |
[6] | HU Zhiqiao, LIU Xian, LIU Shifeng, BAO Chongyun. Comparison of Two Surgical Procedure of Maxillary Sinus Lifting after Decompression of Maxillary Sinus Pseudocyst [J]. Journal of Oral Science Research, 2022, 38(4): 325-329. |
[7] | ZHANG Zhou, LIANG Xiang, CUI Hao, ZHU Yifei, TU Junbo, NA Sijia. Human Bone Marrow Mesenchymal Stem Cells / Extracellular Matrix Complex for Bone Defect Regeneration and Repair [J]. Journal of Oral Science Research, 2022, 38(4): 372-378. |
[8] | CUI Tianning, ZHANG Nini, LONG Yuanzhu, HUANG Guilin, ZHANG Ligang, TANG Jianhong, LUO Qinliang. Repair of Salivary Gland Radiation Injury by Exosomes from Human Amniotic Mesenchymal Stem Cells Pretreated with Hypoxia [J]. Journal of Oral Science Research, 2022, 38(12): 1145-1150. |
[9] | LI Chang, YIN Chengcheng. Advances in Regulation of Macrophage Behaviors by Nanomaterials for Promoting Bone Regeneration [J]. Journal of Oral Science Research, 2022, 38(11): 1010-1013. |
[10] | ZHU Siyu, LIU Huiying. Research Progress of Liraglutide Regulating Bone Metabolism and Promoting Bone Regeneration [J]. Journal of Oral Science Research, 2022, 38(11): 1014-1017. |
[11] | CHEN Yi, WU Yanmin. Research Progress of Microporous Bioceramic Scaffolds in Bone Tissue Engineering [J]. Journal of Oral Science Research, 2022, 38(1): 17-19. |
[12] | CONG Peilin, ZHANG Fuhua. Cone Beam CT Study on Root and Canal System of Maxillary Premolars and Their Relationship with Maxillary Sinus [J]. Journal of Oral Science Research, 2022, 38(1): 60-64. |
[13] | SHAN Yuhua, CHEN Zhenqi. Research Progress on Osteoimmunology Properties of β-TCP [J]. Journal of Oral Science Research, 2021, 37(9): 787-790. |
[14] | HUANG Jiaqian, MA Guowu. Bone Metabolism and Immune Regulation of Statins in Craniofacial Defects Regeneration [J]. Journal of Oral Science Research, 2021, 37(7): 592-594. |
[15] | ZHOU Xuechun, SUN Xinhua. Research Progress of Secretion in Mesenchymal Stem Cell-derived Conditioned Medium with Periodontal Regeneration [J]. Journal of Oral Science Research, 2021, 37(7): 595-597. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 193
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 207
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||