[1] Mathur VP, Dhillon JK. Dental caries: a disease which needs attention [J]. Indian J Pediatr, 2018, 85(3): 202-206. [2] Camilla Bringel Rego, Andreia Menezes Silva, LetAScia Machado GonAalves, et al. In vitro antimicrobial activity of essential oil of Cymbopogon citratus (lemon grass) on Streptococcus mutans biofilm [J]. African Journal of Microbiology Research ,2016, 10(31): 1224-1228. [3] Mehdi Goudarzi, Masoumeh Mehdipour, Bahareh Hajikhani, et al. Antibacterial properties of citrus limon and pineapple extracts on oral pathogenic bacteria (Streptococcus mutans and Streptococcus sanguis) [J]. Int J Enteric Pathog, 2019, 7(3): 99-103. [4] Subramenium GA, Vijayakumar K, Pandian SK. Limonene inhibits streptococcal biofilm formation by targeting surface-associated virulence factors [J]. J Med Microbiol, 2015, 64(8):879-890. [5] Liu Y, Liu P, Wang L, et al. Inhibitory effects of citrus lemon oil and limonene on Streptococcus sobrinus-Induced dental caries in rats [J]. Arch Oral Biol, 2020, 118:104851. [6] Kaldybekov DB, Filippov SK, Radulescu A, et al. Maleimide-functionalised PLGA-PEG nanoparticles as mucoadhesive carriers for intravesical drug delivery [J]. Eur J Pharm Biopharm, 2019, 143:24-34. [7] Rafiei P, Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile [J]. Int J Nanomedicine, 2017, 12: 935-947. [8] Li JC, Zhu N, Zhu JX, et al. Self-assembled cubic liquid crystalline nanoparticles for transdermal delivery of paeonol [J]. Med Sci Monit, 2015, 21: 3298-3310. [9] Naidoo R, Patel M, Gulube Z, et al. Inhibitory activity of Dodonaea viscosa var. angustifolia extract against Streptococcus mutans and its biofilm [J]. J Ethnopharmacol, 2012, 144(1): 171-174. [10] Ngabaza T, Moeno S, Patel M. Anti-acidogenic and anti-biofilm activity of 5, 6, 8-trihydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one [J]. Microb Pathog, 2018, 123: 149-152. [11] Mircioiu C, Voicu V, Anuta V, et al. Mathematical modeling of release kinetics from supramolecular drug delivery systems [J]. Pharmaceutics, 2019, 11(3): 140. [12] Sukhvinder Singh Purewal, Kawaljit Singh Sandhu. Nutritional profile and health benefits of kinnow: an updated review [J]. International Journal of Fruit Science, 2020, 20(4): S1385-S1405. [13] Klepac-Ceraj V, Patel N, Song X, et al. Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria [J]. Lasers Surg Med, 2011, 43(7):600-606. [14] Trigo Gutierrez JK, Zanatta GC, Ortega ALM, et al. Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy [J]. PLoS One, 2017, 12(11):e0187418. [15] Kashi TS, Eskandarion S, Esfandyari-Manesh M, et al. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method [J]. Int J Nanomedicine, 2012, 7:221-234. [16] Dorati R, DeTrizio A, Spalla M, et al. Gentamicin sulfate PEG-PLGA/PLGA-H nanoparticles: screening design and antimicrobial effect evaluation toward clinic bacterial isolates [J]. Nanomaterials (Basel), 2018, 8(1):37. [17] Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release [J]. Chem Rev, 2016, 116(4):2602-2663. [18] Zhang K, Tang X, Zhang J, et al. PEG-PLGA copolymers: Their structure and structure-influenced drug delivery applications [J]. J Control Release, 2014, 183:77-86. [19] Ratna Tantra, Philipp Schulze, Paul Quincey. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility [J]. Particuology, 2010, 8(3): 279-285. [20] Müller HD, Eick S, Moritz A, et al. Cytotoxicity and antimicrobial activity of oral rinses in vitro [J]. Biomed Res Int, 2017, 2017:4019723. |