
Journal of Oral Science Research ›› 2025, Vol. 41 ›› Issue (4): 276-281.DOI: 10.13701/j.cnki.kqyxyj.2025.04.002
Previous Articles Next Articles
YE Huiling, WANG Rui*
Received:2024-06-24
Published:2025-04-24
YE Huiling, WANG Rui. Research Progress on Anti-caries Mechanism of Epigallocatechin Gallate[J]. Journal of Oral Science Research, 2025, 41(4): 276-281.
| [1] Pitts NB, Zero DT, Marsh PD, et al. Dental caries [J]. Nat Rev Dis Primers, 2017, 3: 17030. [2] Spatafora G, Li Y, He X, et al. The evolving microbiome of dental caries [J]. Microorganisms, 2024, 12(1): 121. [3] Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis [J]. Int J Mol Sci, 2022, 24(1): 340. [4] Mehmood S, Maqsood M, Mahtab N, et al. Epigallocatechin gallate: Phytochemistry, bioavailability, utilization challenges, and strategies [J]. J Food Biochem, 2022, 46(8): e14189. [5] Kong C, Zhang H, Li L, et al. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on oral disease-associated microbes: a review [J]. J Oral Microbiol, 2022, 14(1): 2131117. [6] Zhuang Y, Quan W, Wang X, et al. Comprehensive review of EGCG modification: Esterification methods and their impacts on biological activities [J]. Foods, 2024, 13(8): 1232. [7] Truong VL, Jeong WS. Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship [J]. Int J Mol Sci, 2021, 22(17): 9109. [8] Moreno-Ulloa A, Nájera-García N, Hernández M, et al. A pilot study on clinical pharmacokinetics and preclinical pharmacodynamics of (+)-epicatechin on cardiometabolic endpoints [J]. Food Funct, 2018, 9(1): 307-319. [9] Bloch S, Hager-Mair FF, Andrukhov O, et al. Oral streptococci: modulators of health and disease [J]. Front Cell Infect Microbiol, 2024, 14: 1357631. [10] Boisen G, Davies JR, Neilands J. Acid tolerance in early colonizers of oral biofilms [J]. BMC Microbiol, 2021, 21(1): 45. [11] Jakubovics NS, Goodman SD, Mashburn-Warren L, et al. The dental plaque biofilm matrix [J]. Periodontology 2000, 2021, 86(1): 32-56. [12] Li C, Qi C, Yang S, et al. F0F1-ATPase contributes to the fluoride tolerance and cariogenicity of Streptococcus mutans [J]. Front Microbiol, 2021, 12: 777504. [13] Xu X, Zhou XD, Wu CD. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans [J]. Antimicrob Agents Chemother, 2011, 55(3): 1229-1236. [14] Pokorzynski ND, Groisman EA. How bacterial pathogens coordinate appetite with virulence [J]. Microbiol Mol Biol Rev, 2023, 87(3): e0019822. [15] Han S, Washio J, Abiko Y, et al. Green tea-derived catechins suppress the acid productions of Streptococcus mutans and enhance the efficiency of fluoride [J]. Caries Res, 2023, 57(3): 255-264. [16] Han S, Abiko Y, Washio J, et al. Green tea-derived epigallocatechin gallate inhibits acid production and promotes the aggregation of Streptococcus mutans and non-mutans streptococci [J]. Caries Res, 2021, 55(3): 205-214. [17] Banerjee A, Kang CY, An M, et al. Fluoride export is required for the competitive fitness of pathogenic microorganisms in dental biofilm models [J]. mBio, 2024, 15(5): e0018424. [18] Zhang Q, Ma Q, Wang Y, et al. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans [J]. Int J Oral Sci, 2021, 13(1): 30. [19] Costa Oliveira BE, Ricomini Filho AP, Burne RA, et al. The route of sucrose utilization by Streptococcus mutans affects intracellular polysaccharide metabolism [J]. Front Microbiol, 2021, 12: 636684. [20] Xu X, Zhou XD, Wu CD. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes [J]. Arch Oral Biol, 2012, 57(6): 678-683. [21] Schneider-Rayman M, Steinberg D, Sionov RV, et al. Effect of epigallocatechin gallate on dental biofilm of Streptococcus mutans: An in vitro study [J]. BMC Oral Health, 2021, 21(1): 447. [22] Hairul Islam MI, Arokiyaraj S, Kuralarasan M, et al. Inhibitory potential of EGCG on Streptococcus mutans biofilm: A new approach to prevent Cariogenesis [J]. Microb Pathog, 2020, 143: 104129. [23] Aragāo MGB, He X, Aires CP, et al. Epigallocatechin gallate reduces the virulence of cariogenic Streptococcus mutans biofilm by affecting the synthesis of biofilm matrix components [J]. Arch Oral Biol, 2024, 164: 105990. [24] Xiong K, Zhu H, Li Y, et al. The arginine biosynthesis pathway of Candida albicans regulates its cross-kingdom interaction with Actinomyces viscosus to promote root caries [J]. Microbiol Spectr, 2022, 10(4): e0078222. [25] 刘天佳,李文,岳松龄.粘性放线菌菌毛生物性能的研究Ⅲ.粘性放线菌菌毛粘附与凝集活性的研究[J].华西口腔医学杂志, 1999,17(2):169-172. [26] 肖悦,刘天佳,詹玲,等.茶多酚影响致龋菌在胶原粘附的研究[J].华西口腔医学杂志, 2000,18(5): 340-342. [27] Cui X, Xu L, Qi K, et al. Effects of tea polyphenols and theaflavins on three oral cariogenic bacteria [J]. Molecules, 2023, 28(16): 6034. [28] 肖悦,刘天佳,黄正蔚,等.茶多酚对口腔细菌致龋力影响的实验研究[J].广东牙病防治, 2002,10(1): 4-6. [29] 肖悦,刘天佳,黄正蔚,等.天然药物对粘性放线菌生长和产酸影响的体外研究[J].华西医科大学学报,2002,33(2): 253-255. [30] Bowen WH, Burne RA, Wu H, et al. Oral biofilms: Pathogens, matrix and polymicrobial interactions in microenvironments [J]. Trends Microbiol, 2018, 26(3): 229-242. [31] Lapirattanakul J, Nomura R, Okawa R, et al. Oral lactobacilli related to caries status of children with primary dentition [J]. Caries Res, 2020, 54(2): 194-204. [32] Vilela MM, Salvador SL, Teixeira IGL, et al. Efficacy of green tea and its extract, epigallocatechin-3-gallate, in the reduction of cariogenic microbiota in children: a randomized clinical trial [J]. Arch Oral Biol, 2020, 114: 104727. [33] 张瑾,徐欣.乳杆菌与龋病关系的研究进展[J].四川大学学报(医学版), 2022, 53(5): 929-934. [34] Wu CY, Su TY, Wang MY, et al. Inhibitory effects of tea catechin epigallocatechin-3-gallate against biofilms formed from Streptococcus mutans and a probiotic lactobacillus strain [J]. Arch Oral Biol, 2018, 94: 69-77. [35] Higuchi T, Suzuki N, Nakaya S, et al. Effects of Lactobacillus salivarius WB21 combined with green tea catechins on dental caries, periodontitis, and oral malodor [J]. Arch Oral Biol, 2019, 98: 243-247. [36] Zeng Y, Fadaak A, Alomeir N, et al. Lactobacillus plantarum disrupts S. mutans–C. albicans cross-kingdom biofilms [J]. Front Cell Infect Microbiol, 2022, 12: 872012. [37] Guo M, Wu J, Hung W, et al. Lactobacillus paracasei ET-22 suppresses dental caries by regulating microbiota of dental plaques and inhibiting biofilm formation [J]. Nutrients, 2023, 15(15): 3316. [38] Laronha H, Caldeira J. Structure and function of human matrix metalloproteinases [J]. Cells, 2020, 9(5): 1076. [39] Anshida VP, Kumari RA, Murthy CS, et al. Extracellular matrix degradation by host matrix metalloproteinases in restorative dentistry and endodontics: An overview [J]. J Oral Maxillofac Pathol, 2020, 24(2): 352-360. [40] Barbosa CB, Monici Silva I, de Cena JA, et al. Presence of host and bacterial-derived collagenolytic proteases in carious dentin: a systematic review of ex vivo studies [J]. Front Cell Infect Microbiol, 2023, 13: 1278754. [41] Madhan B, Krishnamoorthy G, Rao JR, et al. Role of green tea polyphenols in the inhibition of collagenolytic activity by collagenase [J]. Int J Biol Macromol, 2007, 41(1): 16-22. [42] Kim-Park WK, Allam ES, Palasuk J, et al. Green tea catechininhibits the activity and neutrophil release of Matrix Metalloproteinase-9 [J]. J Tradit Complement Med, 2016, 6(4): 343-346. [43] Alhijji S, Platt JA, Alhotan A, et al. Release and MMP-9 inhibition assessment of dental adhesive modified with EGCG-encapsulated halloysite nanotubes [J]. Nanomaterials (Basel), 2023, 13(6): 999. [44] Alhafez M, Kheder F, Aljoubbeh M. Synthesis, characterization and antioxidant activity of EGCG complexes with copper and zinc ions [J]. J Coord Chem, 2019, 72(14): 2337-2350. [45] Jha S, Kanaujia SP, Limaye AM. Direct inhibition of matrix metalloproteinase-2 (MMP-2) by (-)- epigallocatechin-3-gallate: A possible role for the fibronectin type Ⅱ repeats [J]. Gene, 2016, 593(1): 126-130. [46] Chowdhury A, Nandy SK, Sarkar J, et al. Inhibition of pro-/active MMP-2 by green tea catechins and prediction of their interaction by molecular docking studies [J]. Mol Cell Biochem, 2017, 427(1-2): 111-122. [47] Sarkar J, Nandy SK, Chowdhury A, et al. Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis [J]. Biomed Pharmacother, 2016, 84: 340-347. [48] Rossi AD, Pradela T, Liévana FS, et al. Effect of EGCG-based paste as intracanal dressing, in MMPs 2 and 9 expression in dog’s periapical lesions [J]. Braz Dent J, 2024, 35: e245509. [49] Morin MP, Grenier D. Regulation of matrix metalloproteinase secretion by green tea catechins in a three-dimensional co-culture model of macrophages and gingival fibroblasts [J]. Arch Oral Biol, 2017, 75: 89-99. [50] Bretaudeau C, Baud S, Dupont-Deshorgue A, et al. AG-9, an elastin-derived peptide, increases in vitro oral tongue carcinoma cell invasion, through an increase in MMP-2 secretion and MT1-MMP expression, in a RPSA-dependent manner [J]. Biomolecules, 2020, 11(1): 39. [51] Araujo TT, Dionizio A, Carvalho TS, et al. Acquired enamel pellicle and biofilm engineering with a combination of acid-resistant proteins (CaneCPI-5, StN15, and Hemoglobin) for enhanced protection against dental caries-in vivo and in vitro investigations [J]. Clin Oral Investig, 2024, 28(5): 261. [52] Zhang F, Cheng Z, Ding C, et al. Functional biomedical materials derived from proteins in the acquired salivary pellicle [J]. J Mater Chem B, 2021, 9(33): 6507-6520. [53] Niemeyer SH, Baumann T, Lussi A, et al. Plant extracts have dual mechanism on the protection against dentine erosion: action on the dentine substrate and modification of the salivary pellicle [J]. Sci Rep, 2023, 13(1): 7089. [54] Niemeyer SH, Jovanovic N, Sezer S, et al. Dual protective effect of the association of plant extracts and fluoride against dentine erosion: In the presence and absence of salivary pellicle [J]. PLoS One, 2023, 18(5): e0285931. [55] Rehage M, Delius J, Hofmann T, et al. Oral astringent stimuli alter the enamel pellicle’s ultrastructure as revealed by electron microscopy [J]. J Dent, 2017, 63: 21-29. [56] Kristensen MF, Frandsen Lau E, Schlafer S. Ratiometric imaging of extracellular pH in Streptococcus mutans biofilms exposed to different flow velocities and saliva film thicknesses [J]. J Oral Microbiol, 2021, 13(1): 1949427. [57] de Souza-E-Silva CM, da Silva Ventura TM, de Pau L, et al. Effect of gels containing chlorhexidine or epigallocatechin-3-gallate on the protein composition of the acquired enamel pellicle [J]. Arch Oral Biol, 2017, 82: 92-98. [58] Ding L, Zeng J, Luo M, et al. Molecular simulation of statherin adsorption on hydroxyapatite (001) surface [J]. Advanced Materials Interfaces, 2022, 9(33): 2201289. [59] Shimotoyodome A, Kobayashi H, Tokimitsu I, et al. Statherin and histatin 1 reduce parotid saliva-promoted Streptococcus mutans strain MT8148 adhesion to hydroxyapatite surfaces [J]. Caries Res, 2006, 40(5): 403-411. [60] Gao X, Jiang S, Koh D, et al. Salivary biomarkers for dental caries [J]. Periodontology 2000, 2016, 70(1): 128-141. [61] Zhang Q, Fei X, Li Y, et al. Epigallocatechin-3-gallate attenuates fluoride induced apoptosis via PI3K/FoxO1 pathway in ameloblast-like cells [J]. Toxicon, 2024, 247: 107857. |
| [1] | Zulihumaer·NUERAIHEMAITI, Maikeliya·PALIHATI, Gulibaha·MAIMAITILI. Proteomic Study on Salivary Differences between OSAHS Children and Non-OSAHS Children [J]. Journal of Oral Science Research, 2025, 41(4): 306-313. |
| [2] | SHEN Shengjie, SUN Ning, XIAO Ting, LI Quanli. EGCG Crosslinked Biomimetic Mineralized Decellularized Matrix of Filefish Skin As A Membrane for Guided Bone Tissue Regeneration [J]. Journal of Oral Science Research, 2024, 40(5): 448-455. |
| [3] | ZHAO Xiaowei, CHEN Fangyuan, WEI Hongping, LI Yuhong. Preparation and Evaluation of Bacteriophage LysP53 Mouthwash [J]. Journal of Oral Science Research, 2023, 39(6): 553-557. |
| [4] | JIANG Mei, LU Kanghua, CHEN Ruyue, ZHENG Hui, SHI Yan. Comparative Study on Three-dimensional Elastic Stress Analysis between Caries and Healthy Teeth [J]. Journal of Oral Science Research, 2022, 38(12): 1155-1160. |
| [5] | LIU Mengyu. Mechanism of Interleukin-17 Regulating Matrix Metalloproteinase Expression and Inflammation in Dental Pulp [J]. Journal of Oral Science Research, 2021, 37(5): 425-430. |
| [6] | MOU Wenbo, CHENG Yao, DONG Bo. Effect of Benzalkonium Chloride Modified Adhesive on Long-term Bond Strength of Dentin-resin [J]. Journal of Oral Science Research, 2021, 37(4): 344-348. |
| [7] | ZHANG Xu, LIU Jiawen. Expression and Significance of MMP-9, COX-2, and NF-κB in Oral Squamous Cell Carcinoma [J]. Journal of Oral Science Research, 2021, 37(4): 360-365. |
| [8] | ZHANG Jin, XU Xin. Research Progress of Small Molecule Compounds Against Dental Plaque Biofilm [J]. Journal of Oral Science Research, 2021, 37(3): 204-207. |
| [9] | LIU Yang, BAI Yuehui, CUI Yulan, ZHAO Chen. Effects of Chronic Sleep Deprivation on Expression of MMP-2 and MMP-9 in Condyle of Rats [J]. Journal of Oral Science Research, 2021, 37(11): 1009-1016. |
| [10] | WANG Junhui, WANG Zirui, ZHOU Zhifei, ZHANG Baize, GE Xin, CHEN Yujiang, DU Yang, WANG Xiaojing. Clinical Evaluation of Er:YAG Laser in Primary Caries Treatment [J]. Journal of Oral Science Research, 2020, 36(11): 1050-1054. |
| [11] | CHAI Jihua, LI Yuqing, YUAN Guohua, ZHANG Yufeng. Effects of Matrix Metalloproteinase-9 on Bone Development and Remodeling of Postnatal Mice [J]. Journal of Oral Science Research, 2019, 35(7): 708-711. |
| [12] | XU Chuan, LI Ya-nan, QIAO Dan, GU Huan, ZHONG Luo, WU Jian, YU Tao. Molecular Mechanism of MicroRNA-9 Influencing Invasion of Salivary Adenoid Cystic Carcinoma Cells [J]. Journal of Oral Science Research, 2019, 35(6): 563-567. |
| [13] | HUANG Lin, FANG Wei-su, CAO Jun. Expression of Interleukin-1β and Matrix Metalloproteinase-2 in Periodontal Tissues of Rat during Root Resorption [J]. Journal of Oral Science Research, 2019, 35(6): 604-607. |
| [14] | ZHANG Xin-yu, WU Shuang-yan, WU Hong, XU Zhu-qing, WANG Yun-ying, XU Xiao-na, LI Xin, ZHENG Jian-jin. Effect of Human Umbilical Cord Mesenchymal Stem Cells on Invasion and Migration of Cal-27 Cells from Tongue Squamous Cell Carcinoma. [J]. Journal of Oral Science Research, 2019, 35(5): 443-447. |
| [15] | LI Jingya, HUANG Yang. Research Progress of Matrix Metalloproteinases in Caries [J]. Journal of Oral Science Research, 2019, 35(12): 1122-1124. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||