
Journal of Oral Science Research ›› 2025, Vol. 41 ›› Issue (10): 838-843.DOI: 10.13701/j.cnki.kqyxyj.2025.10.002
Previous Articles Next Articles
ZHONG Run1,2, LIU Ting1,2*
Received:2024-12-18
Published:2025-10-23
ZHONG Run, LIU Ting. Research Advances in Effect of Melatonin on Alveolar Bone Metabolism during Orthodontic Tooth Movement[J]. Journal of Oral Science Research, 2025, 41(10): 838-843.
| [1] Seddiqi H, Klein-Nulend J, Jin J. Osteocyte mechanotransduction in orthodontic tooth movement [J]. Curr Osteoporos Rep, 2023, 21(6): 731-742. [2] Li Y, Zhan Q, Bao M, et al. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade [J]. Int J Oral Sci, 2021, 13(1): 20. [3] 唐中元,姜欢,陈玉,等.双膦酸盐在正畸治疗中的新进展与展望[J].口腔医学,2020,40(3):266-270. [4] Cui Y, Hong S, Xia Y, et al. Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy [J]. Adv Sci (Weinh), 2023, 10(27): e2302029. [5] Patil S, Alamoudi A, Zidane B, et al. Dose-dependent effects of melatonin on the viability, proliferation, and differentiation of dental pulp stem cells (DPSCs) [J]. J Pers Med, 2022, 12(10):1620. [6] Xin X, Liu J, Liu X, et al. Melatonin-derived carbon dots with free radical scavenging property for effective periodontitis treatment via the Nrf2/HO-1 pathway [J]. ACS Nano, 2024, 18(11): 8307-8324. [7] Yuan G, Lin X, Liu Y, et al. Skeletal stem cells in bone development, homeostasis, and disease [J]. Protein Cell, 2024, 15(8): 559-574. [8] Huang HM, Han CS, Cui SJ, et al. Mechanical force-promoted osteoclastic differentiation via periodontal ligament stem cell exosomal protein ANXA3 [J]. Stem Cell Reports, 2022, 17(8): 1842-1858. [9] Deng J, Zhuang ZM, Xu X, et al. Mechanical force increases tooth movement and promotes remodeling of alveolar bone defects augmented with bovine bone mineral [J]. Prog Orthod, 2024, 25(1): 2. [10] Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement [J]. J Dent Res, 2009, 88(7): 597-608. [11] Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives [J]. Med Sci (Basel), 2018, 6(2):33. [12] Alghamdi B, Jeon HH, Ni J, et al. Osteoimmunology in periodontitis and orthodontic tooth movement [J]. Curr Osteoporos Rep, 2023, 21(2): 128-146. [13] 谭海涛,陈涛,黎坚,等.阿达木单抗联合艾拉莫德对类风湿关节炎老年患者免疫功能及血管内皮生长因子水平的影响[J].中国老年学杂志,2024,44(10):2404-2408. [14] 马浩楠,于维先.氧化应激在牙周炎影响全身疾病过程中的作用研究[J].现代口腔医学杂志,2024,38(2):136-139. [15] Xu Y, Luo Y, Weng Z, et al. Microenvironment-responsive metal-phenolic nanozyme release platform with antibacterial, ROS scavenging, and osteogenesis for periodontitis [J]. ACS Nano, 2023, 17(19): 18732-18746. [16] Bumann EE, Frazier-Bowers SA. A new cyte in orthodontics: Osteocytes in tooth movement [J]. Orthod Craniofac Res, 2017, 20 Suppl 1(Suppl 1): 125-128. [17] Ru L, Pan B, Zheng J. Signalling pathways in the osteogenic differentiation of periodontal ligament stem cells [J]. Open Life Sci, 2023, 18(1): 20220706. [18] Zhao X, Lin H, Ding T, et al. Overview of the main biological mechanisms linked to changes in periodontal ligament stem cells and the inflammatory microenvironment [J]. J Zhejiang Univ Sci B, 2023, 24(5): 373-386. [19] Rim EY, Clevers H, Nusse R. The Wnt pathway: From signaling mechanisms to synthetic modulators [J]. Annu Rev Biochem, 2022, 91: 571-598. [20] Gao Y, Chen N, Fu Z, et al. Progress of Wnt signaling pathway in osteoporosis [J]. Biomolecules, 2023, 13(3):483. [21] Zhang J, Jia G, Xue P, et al. Melatonin restores osteoporosis-impaired osteogenic potential of bone marrow mesenchymal stem cells and alleviates bone loss through the HGF/PTEN/Wnt/β-catenin axis [J]. Ther Adv Chronic Dis, 2021, 12: 2040622321995685. [22] Han H, Tian T, Huang G, et al. The lncRNA H19/miR-541-3p/Wnt/β-catenin axis plays a vital role in melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Aging (Albany NY), 2021, 13(14): 18257-18273. [23] Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling [J]. Cell, 2008, 132(3): 344-362. [24] Aoki T, Hiura F, Li A, et al. Inhibition of non-canonical NF-κB signaling suppresses periodontal inflammation and bone loss [J]. Front Immunol, 2023, 14: 1179007. [25] Xue C, Luo H, Wang L, et al. Aconine attenuates osteoclast-mediated bone resorption and ferroptosis to improve osteoporosis via inhibiting NF-κB signaling [J]. Front Endocrinol (Lausanne), 2023, 14: 1234563. [26] Zhu L, Liu Y, Wang A, et al. Application of BMP in bone tissue engineering [J]. Front Bioeng Biotechnol, 2022, 10: 810880. [27] Chen XJ, Shen YS, He MC, et al. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway [J]. Biomed Pharmacother, 2019, 112: 108746. [28] Ahmad SB, Ali A, Bilal M, et al. Melatonin and health: Insights of melatonin action, biological functions, and associated disorders [J]. Cell Mol Neurobiol, 2023, 43(6): 2437-2458. [29] 杨世缘,胡月,周宇宁,等.褪黑素在牙周炎诊治中的研究进展[J].口腔医学,2021,41(3):259-264. [30] Wu J, Bai Y, Wang Y, et al. Melatonin and regulation of autophagy: Mechanisms and therapeutic implications [J]. Pharmacol Res, 2021, 163: 105279. [31] 郑俊杰,陈冬冬,林佳生,等.褪黑素对骨质疏松大鼠骨代谢及成骨细胞Wnt/β-catenin信号通路的影响[J].福建医药杂志,2023,45(4):111-114. [32] Córdoba-Moreno MO, Santos GC, Muxel SM, et al. IL-10-induced STAT3/NF-κB crosstalk modulates pineal and extra-pineal melatonin synthesis [J]. J Pineal Res, 2024, 76(1): e12923. [33] Zhao R, Tao L, Qiu S, et al. Melatonin rescues glucocorticoid-induced inhibition of osteoblast differentiation in MC3T3-E1 cells via the PI3K/AKT and BMP/Smad signalling pathways [J]. Life Sci, 2020, 257: 118044. [34] Choi JH, Jang AR, Park MJ, et al. Melatonin inhibits osteoclastogenesis and bone loss in ovariectomized mice by regulating PRMT1-mediated signaling [J]. Endocrinology, 2021, 162(6):bqab057. [35] Kim SS, Jeong SP, Park BS, et al. Melatonin attenuates RANKL-induced osteoclastogenesis via inhibition of Atp6v0d2 and DC-STAMP through MAPK and NFATc1 signaling pathways [J]. Molecules, 2022, 27(2):501. [36] Ma H, Wang X, Zhang W, et al. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis [J]. Oxid Med Cell Longev, 2020, 2020: 9067610. [37] 张梦涵,何智琪,邓辉,等.褪黑素对人牙周膜细胞成骨分化能力的影响[J].口腔医学,2021,41(3):198-203. [38] Han Y, Kim YM, Kim HS, et al. Melatonin promotes osteoblast differentiation by regulating Osterix protein stability and expression [J]. Sci Rep, 2017, 7(1): 5716. [39] Ren M, Liu H, Jiang W, et al. Melatonin repairs osteoporotic bone defects in Iron-overloaded rats through PI3K/AKT/GSK-3β/P70S6k signaling pathway [J]. Oxid Med Cell Longev, 2023, 2023: 7718155. [40] Tian Y, Gong Z, Zhao R, et al. Melatonin inhibits RANKL-induced osteoclastogenesis through the miR-882/Rev-erbα axis in Raw264.7 cells [J]. Int J Mol Med, 2021, 47(2): 633-642. [41] Maria S, Samsonraj RM, Munmun F, et al. Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis [J]. J Pineal Res, 2018, 64(3):10.1111/jpi.12465. [42] Klein Y, David E, Pinto N, et al. Breaking a dogma: orthodontic tooth movement alters systemic immunity [J]. Prog Orthod, 2024, 25(1): 38. [43] Cho JH, Bhutani S, Kim CH, et al. Anti-inflammatory effects of melatonin: A systematic review and meta-analysis of clinical trials [J]. Brain Behav Immun, 2021, 93: 245-253. [44] 湛济帆,田艾.巨噬细胞集落刺激因子-1及其受体在牙周炎中的研究进展[J].口腔医学研究,2024,40(3):199-205. [45] Hu Y, Xiong Y, Zha K, et al. Melatonin promotes BMSCs osteoblastic differentiation and relieves inflammation by suppressing the NF-κB pathways [J]. Stem Cells Int, 2023, 2023: 7638842. [46] Wu X, Qiao S, Wang W, et al. Melatonin prevents peri-implantitis via suppression of TLR4/NF-κB [J]. Acta Biomater, 2021, 134: 325-336. [47] Xia Y, Chen S, Zeng S, et al. Melatonin in macrophage biology: Current understanding and future perspectives [J]. J Pineal Res, 2019, 66(2): e12547. [48] Martín Giménez VM, Chuffa LGA, Simão VA, et al. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: Epigenetic mechanisms involved [J]. Life Sci, 2022, 288: 120191. [49] Huang C, Qing L, Pang X, et al. Melatonin improved the survival of multi-territory perforator flaps by promoting angiogenesis and inhibiting apoptosis via the NRF2/FUNDC1 axis [J]. Front Pharmacol, 2022, 13: 921189. [50] Knani L, Venditti M, Kechiche S, et al. Melatonin protects bone against cadmium-induced toxicity via activation of Wnt/β-catenin signaling pathway [J]. Toxicol Mech Methods, 2020, 30(4): 237-245. [51] Bocheva G, Slominski RM, Janjetovic Z, et al. Protective role of melatonin and its metabolites in skin aging [J]. Int J Mol Sci, 2022, 23(3):1238. [52] Wang X, Jiang W, Pan K, et al. Melatonin induces RAW264.7 cell apoptosis via the BMAL1/ROS/MAPK-p38 pathway to improve postmenopausal osteoporosis [J]. Bone Joint Res, 2023, 12(11): 677-690. [53] Yang M, Tao J, Wu H, et al. Aanat knockdown and melatonin supplementation in embryo development: Involvement of mitochondrial function and DNA methylation [J]. Antioxid Redox Signal, 2019, 30(18): 2050-2065. [54] Guo WS, Deng X, Yang MX, et al. A pilot study on the expression of circadian clock genes in the alveolar bone of mice with periodontitis [J]. Chronobiol Int, 2024, 41(2): 193-200. [55] Li T, Zhang S, Yang Y, et al. Co-regulation of circadian clock genes and microRNAs in bone metabolism [J]. J Zhejiang Univ Sci B, 2022, 23(7): 529-546. [56] Yao D, Li R, Hao J, et al. Melatonin alleviates depression-like behaviors and cognitive dysfunction in mice by regulating the circadian rhythm of AQP4 polarization [J]. Transl Psychiatry, 2023, 13(1): 310. [57] Duffy JF, Wang W, Ronda JM, et al. High dose melatonin increases sleep duration during nighttime and daytime sleep episodes in older adults [J]. J Pineal Res, 2022, 73(1): e12801. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||