Journal of Oral Science Research ›› 2017, Vol. 33 ›› Issue (8): 901-904.DOI: 10.13701/j.cnki.kqyxyj.2017.08.025
Previous Articles Next Articles
XIA Hou-fu, REN Jian-gang, ZHAO Yi-fang*.
Received:
2016-07-06
Online:
2017-08-20
Published:
2017-08-28
CLC Number:
XIA Hou-fu, REN Jian-gang, ZHAO Yi-fang.. MicroRNAs and Tumor Angiogenesis.[J]. Journal of Oral Science Research, 2017, 33(8): 901-904.
[1] Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression [J]. Nat Rev Cancer, 2012, 12(9)∶613-626 [2] Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis [J]. Nature, 2011, 473(7347)∶298-307 [3] Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis [J]. Cell, 2011, 146(6)∶873-887 [4] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5)∶646-674 [5] Landskroner-Eiger S, Moneke I, Sessa WC. MiRNAs as modulators of angiogenesis [J]. Cold Spring Harb Perspect Med, 2013, 3(2)∶a006643 [6] Song ZF, Li GH. Role of specific microRNAs in regulation of vascular smooth muscle cell differentiation and the response to injury [J]. J Cardiovasc Transl Res, 2010, 3(3)∶246-250 [7] Chou J, Payam S, Zena W. MicroRNA-mediated regulation of the tumor microenvironment [J]. Cell Cycle, 2013, 12(20)∶3262-3271 [8] Li LQ, Li H. Role of microRNA-mediated MMP regulation in the treatment and diagnosis of malignant tumors [J]. Cancer Biol Ther, 2013, 14(9)∶796-805 [9] Dang LT, Lawson ND, Fish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development [J]. Arterioscler Thromb Vasc Biol, 2013, 33(2)∶193-200 [10] Kuninty PR, Schnittert J, Storm G, et al. MicroRNA targeting to modulate tumor microenvironment [J]. Front Oncol, 2016, 6∶3 [11] Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity [J]. Dev cell, 2008, 15(2)∶272-284 [12] Wang S, Aurora AB, Johnson BA, et al. An Endothelial-specific microRNA Governs Vascular Integrity and Angiogenesis [J]. Dev cell, 2008, 15(2)∶261-271 [13] Du C, Lv Z, Cao L, et al. MiR-126-3p suppresses tumor metastasis and angiogenesis of hepatocellular carcinoma by targeting LRP6 and PIK3R2 [J]. J Transl Med, 2014, 12∶259 [14] Zhu N, Zhang D, Xie H, et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2 [J]. Mol Cell Biochem, 2011, 351(1-2)∶157-164 [15] Sasahira T, Kurihara M, Bhawal UK, et al. Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer [J]. Br J Cancer, 2012, 107(4)∶700-706 [16] Chen H, Li L, Wang S, et al. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A [J]. Oncotarget, 2014, 5(23)∶11873-11885 [17] Zhang Y, Wang X, Xu B, et al. Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer [J]. Oncol Rep, 2013, 30(4)∶1976-1984 [18] Jusufovic E, Rijavec M, Keser D, et al. let-7b and miR-126 are down-regulated in tumor tissue and correlate with microvessel density and survival outcomes in non--small--cell lung cancer [J]. PLoS One, 2012, 7(9)∶e45577 [19] Nichol D, Stuhlmann H. EGFL7: a unique angiogenic signaling factor in vascular development and disease [J]. Blood, 2012, 119(6)∶1345-1352 [20] Nicoli S, Knyphausen CP, Zhu LJ, et al. miR-221 is required for endothelial tip cell behaviors during vascular development [J]. Dev Cell, 2012, 22(2)∶418-429 [21] Koelz M, Lense J, Wrba F, et al. Down-regulation of miR-221 and miR-222 correlates with pronounced Kit expression in gastrointestinal stromal tumors [J]. Int J Oncol, 2011, 38(2)∶503-511 [22] Elmasri H, Ghelfi E, Yu CW, et al. Endothelial cell-fatty acid binding protein 4 promotes angiogenesis: role of stem cell factor/c-kit pathway [J]. Angiogenesis, 2012, 15(3)∶457-468 [23] Yang F, Wang W, Zhou C, et al. MiR-221/222 promote human glioma cell invasion and angiogenesis by targeting TIMP2 [J]. Tumour Biol, 2015, 36(5)∶3763-3773 [24] Santhekadur PK, Das SK, Gredler R, et al. Multifunction protein staphylococcal nuclease domain containing 1 (SND1) promotes tumor angiogenesis in human hepatocellular carcinoma through novel pathway that involves nuclear factor kappaB and miR-221 [J]. J Biol Chem, 2012, 287(17)∶13952-13958 [25] Yang TQ, Lu XJ, Wu TF, et al. MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-kappaB1/MMP9 signaling pathway [J]. Cancer Sci, 2014, 105(3)∶265-271 [26] Chamorro-Jorganes A, Araldi E, Penalva LO, et al. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 [J]. Arterioscler Thromb Vasc Biol, 2011, 31(11)∶2595-2606 [27] Musumeci M, Coppola V, Addario A, et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer [J]. Oncogene, 2011, 30(41)∶4231-4242 [28] Dejean E, Renalier MH, Foisseau M, et al. Hypoxia-microRNA-16 downregulation induces VEGF expression in anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell lymphomas [J]. Leukemia, 2011, 25(12)∶1882-1890 [29] Sun CY, She XM, Qin Y, et al. miR-15a and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF [J]. Carcinogenesis, 2013, 34(2)∶426-435 [30] Dai L, Wang W, Zhang S, et al. Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo [J]. Cell Biol Int, 2012, 36(8)∶765-770 [31] Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster [J]. Nat Genet, 2006, 38(9)∶1060-1065 [32] Jiang H, Wang P, Wang Q, et al.Quantitatively controlling expression of miR-17~92 determines colon tumor progression in a mouse tumor model [J]. Am J Pathol, 2014, 184(5)∶1355-1368 [33] Engelmann D, Mayoli-Nussle D, Mayrhofer C, et al. E2F1 promotes angiogenesis through the VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of PDGF-B [J]. J Mol Cell Biol, 2013, 5(6)∶391-403 [34] Skrzypek K, Tertil M, Golda S, et al. Interplay between heme oxygenase-1 and miR-378 affects non-small cell lung carcinoma growth, vascularization, and metastasis [J]. Antioxid Redox Signal, 2013, 19(7)∶644-660 [35] Chen LT, Xu SD, Xu H,et al.MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis [J]. Med Oncol, 2012, 29(3)∶1673-1680 [36] Chan JK, Kiet TK, Blansit K, et al. MiR-378 as a biomarker for response to anti-angiogenic treatment in ovarian cancer [J]. Gynecol Oncol, 2014, 133(3)∶568-574 [37] Merritt WM, Lin YG, Spannuth WA, et al. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth [J]. J Natl Cancer Inst, 2008, 100(5)∶359-372 [38] Pecot CV, Rupaimoole R, Yang D, et al. Tumour angiogenesis regulation by the miR-200 family [J]. Nat Commun, 2013, 4∶2427 [39] Kong D, Li Y, Wang Z, et al. The miR-200 regulates PDGF-D mediated epithelial-mesenchymal transition, adhesion and invasion of prostate cancer cells [J]. Stem Cells, 2009, 27(8)∶1712-1721 [40] Chan YC, Khanna S, Roy S, et al. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells [J]. J Biol Chem, 2011, 286(3)∶2047-2056 [41] Liu H, Brannon AR, Reddy AR, et al. Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell Renal Cell Carcinoma [J]. BMC Syst Biol, 2010, 4∶51 [42] Roybal JD, Zang Y, Ahn YH, et al. miR-200 Inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1 [J]. Mol Cancer Res, 2011, 9(1)∶25-35 |
[1] | MA Wen, WEI Yi, LU Lin, FU Shuai, ZHANG Changbin, CUI Qingying, PENG Canbang, WANG Lidong, XU Yanhua, LI Ming. Application of Multi types of Digital Images Matching and 3D Printing Technology in the Treatment of Condylar Tumor [J]. Journal of Oral Science Research, 2021, 37(1): 81-86. |
[2] | LIU Rongrong, MENG Xiangjiao. Extraosseous Calcifying Epithelial Odontogenic Tumor: One Case Report [J]. Journal of Oral Science Research, 2021, 37(1): 89-90. |
[3] | WANG Linxuan, WANG Qi, ZHAO Yun, LIU Yiming, HAN Mei, MI Fanglin. Effect of TNF-α on Expression of ephrinB2/EphB4 in Periodontal Fibroblasts [J]. Journal of Oral Science Research, 2020, 36(8): 741-744. |
[4] | HUANG Chunming, LIU Ke. Influence of Down-regulation of miR-181a-5p Expression on Spontaneous Cell Fusion of CAL-27 and HUVEC [J]. Journal of Oral Science Research, 2020, 36(8): 757-760. |
[5] | WANG Dani, SUN Guowen, TIAN Mei, CHEN Haoliang, ZHAI Yiwei, ZHANG Lei. Clinical Analysis and Treatment of Solitary Fibrous Tumors in Oral and Maxillofacial Region [J]. Journal of Oral Science Research, 2020, 36(6): 558-562. |
[6] | LIU Kun, LI Jun. Research Progress on Repairing the Penetrating Defect After Surgery of Palatal Malignant Tumors [J]. Journal of Oral Science Research, 2020, 36(2): 114-116. |
[7] | LI Yi, DOU Shengjin, ZHANG Lin, LI Rongrong, ZHU Guopei. Exploration and Study of PD-1 Antibody Combined with Anti-angiogenesis Targeted Therapy in Advanced Recurrent and Metastatic Head and Neck Tumors [J]. Journal of Oral Science Research, 2020, 36(2): 158-163. |
[8] | QIAN Yemei, PAN Guoqing, WANG Weihong, LOU Huiquan, LI Jingyi, ZHANG Zhe. Odontogenic Tumors in Southwest China Over a 14-year Retrospective Study of 494 Cases [J]. Journal of Oral Science Research, 2020, 36(2): 164-166. |
[9] | TANG Yan, HOU Guoqi, JIANG Junqiang, WANG Lijuan, LI Yingming. Melanotic Neuroectodermal Tumor of Infancy in Maxilla: A Case Report [J]. Journal of Oral Science Research, 2020, 36(2): 187-188. |
[10] | TAO Boqiang, LIU Yingkun, LI Yuyang, MIN Fenghe, LIU Huimin,YANG Zhijing, LIU Weiwei. Comparative Analysis of Sternocleidomastoid Muscle Flap and Oral Repair Membrane in Postoperative Treatment of Benign Parotid Tumor [J]. Journal of Oral Science Research, 2020, 36(11): 1036-1039. |
[11] | HONG Xiaowei, SUN Guowen, WANG Zhiyong, ZHU Feng, LI Wei. Application of Anterior Auricular Extension Incision in Resection of Accessory Parotid Gland Tumors [J]. Journal of Oral Science Research, 2020, 36(10): 912-914. |
[12] | SUN Yajing, LI Baojiang. Clinicopathological Analysis of Pleomorphic Hyalinizing Angiectatic Tumor of Soft Tissue [J]. Journal of Oral Science Research, 2020, 36(10): 925-929. |
[13] | LIU Kun, YAN Guangpeng, CHEN Junwen, GAO Peng, LI Jun. Therapeutic Effect of Small Intestinal Submucosa in Preventing Frey's Syndrome after Surgery of Parotid Benign Tumor [J]. Journal of Oral Science Research, 2019, 35(8): 772-775. |
[14] | SUN Hong-chen, LI Xing. Advances in Nanomedicine Strategies to Target Tumor-associated Macrophage [J]. Journal of Oral Science Research, 2019, 35(6): 511-516. |
[15] | SUN Jin-hu, LI Meng. Application of 125I Radioactive Seed Implantation in Treatment of Oral and Maxillofacial Malignant Tumors. [J]. Journal of Oral Science Research, 2019, 35(5): 415-418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||